
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 12-1: ML and F#

Outline

• Logical operators

• unit datatype

• More about lists

• Basic pattern matching

Logical operators

Logical operators

operation syntax

and &&

not not

equals =

not equals <>

inequalities <, >, <=, >=

unit

unit datatype

public static void main(String[] args) { … }

let main args = …

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) = …

Remember: every expression must return a value.

A function can’t return nothing.

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) : unit = …

Therefore, “nothing” is a thing… called unit.

unit datatype

$

How does one obtain a value of unit?

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

 unit;;
 ^^^^

stdin(1,1): error FS0039: The value or constructor 'unit' is
not defined.

>
val it : unit = ()

>

$ fsharpi

> unit;;

> ();;

()

val it : unit = ()

>

> ignore (foo());;

val it : int = 2

>

val foo : unit -> int

>

You can also ignore…

> let foo() = 2;; >

> foo();;

val it : unit = ()

>

> foo() |> ignore;;

“forward pipe” operator
<expr> |> <expr>

foo() |> ignore

By the way…

let main(args: string[]) : unit = …

By the way…

let main(args: string[]) : int = …

Lists

Linked List

A linked list is a recursive data structure.

A list is either:

• the empty list, or
• a node, containing an element and a reference to a list.

Linked List

The empty list is defined as nil (or [])

Linked List

Every other list has at least one list node.

Linked List

23

The last node in the list always points to nil.

Linked List

A list has parts.

234

head tail

Linked List

A list has parts.

234

head

tail

•Examples
– [1; 2; 3; 4], [“wombat"; "dingbat"]
– [] is empty list
– all elements of list must be same type

•Operations
– length length [1;2;3] ⇒ 3

– append [1;2]@[3;4] ⇒ [1; 2; 3; 4]

– cons 1::[2;3] ⇒ [1; 2; 3]

– map List.map succ [1;2;3] ⇒ [2;3;4]

Lists

•1::2::[] : int list
“wombat”::"numbat"::[] : string list

•What type of list is []?

- [];

val it : 'a list

•Polymorphic type

– 'a is a type variable that represents any type

– 1::[] : int list

– “a”::[] : string list

List types

> let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums);;

val product : int list -> int

> product [5; 2; 3];;
val it : int = 30

Functions on Lists

Let’s define product…

Pattern Matching

A pattern is built from

•values,

• (de)constructors,

•and variables

Tests whether values match “pattern”

If yes, values bound to variables in pattern

Pattern matching

Pattern matching

let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

Pattern matching on integers

Write a function listOfInts that returns a
list of integers from zero to n.

Oops! This returns the list backward.

Let’s flip it around.

let rec listOfInts n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)
 li n |> List.rev

… by defining a function inside our function.

•Remember, a list is one of two things:
– []
– <first elem> :: <rest of elems>
– E.g., [1; 2; 3] = 1::[2,3] = 1::2::[3]
= 1::2::3::[]

•Can define function by cases…

Pattern matching on lists

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cartesianProduct xs ys =
 match xs,ys with
 | [] ,_ -> []
 | _ ,[] -> []
 | x::xs’,_ ->
 let zs = ys |> List.map (fun y -> (x,y))
 zs @ cartesianProduct xs’ ys

Pattern matching on tuples

Cartesian product…
•Patterns can be used in place of variables

•Most basic pattern form
– let <pattern> = <exp>

•Examples
– let x = 3
– let tuple = ("moo", “cow")
– let (x,y) = tuple
– let myList = [1; 2; 3]
– let w::rest = myList
– let v::_ = myList

Patterns in declarations

Recap & Next Class

Today we covered:

Next lecture:

ADTs & advanced F#

Logical operations

unit datatype

Lists

Pattern matching

