CSClI 334
Principles of Programming Languages

Lecture 12-1. ML and F#

Instructor: Dan Barowy

Williams

Outline

Logical operators
unit datatype

More about lists

Basic pattern matching

Logical operators

Logical operators

operation syntax
and & &
not not
equals =

not equals <>

iInequalities <, >, <=, >=

unit

unit datatype

static void main(String[] args) { ..

let main args = ..

unit datatype

public static id main(String[] args) { ..

let main(args: stringl[]) = ..

Remember: every expression must return a value.
A function can’t return nothing.

unit datatype

oid main(String[] args) { ..

let main(args: string[]) : unit = ..

Therefore, "nothing” is a thing.. called uni t.

unit datatype

$ fsharpi

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;
> unit;;

unit;;

AAAA

stdin(1l,1): error FS0039: The value or constructor 'unit' is
not defined.

> ()i
val it : unit = ()

>

How does one obtain a value of unit? ()

You can also ignore..

> let foo() = 2;;
val foo : unit -> int

> foo();;
val it : int = 2

> ignore (foo());;
val it : unit = ()

> foo () |> ignore;;
val it : nit = ()

>

‘forward pipe" operator
<expr> |> <expr>

foo() |> ignore

By the way..

let main(args: string[]) : unit = ..

By the way..

let main(args: stringl[])

Linked List

A linked list is a recursive data structure.

A list is either:

Lists « the empty list, or
» anode, containing an element and a reference to a list.
Linked List Linked List
[/} —)

The empity list is defined as nil (or [])

Every other list has at least one list node.

Linked List

The last node in the list always points to nil.

Linked List

head tail

A list has parts.

Linked List

tail
NN
I T ———+»Q§

head

A list has parts.

Lists

e Examples
- [1; 2; 3; 4], [“wombat"; "dingbat"]
- [1 isempty list
- all elements of list must be same type

e Operations

- length length [1;2;3] =3
- append [1;2]1Q@[3;4] = [1; 2; 3; 4]
- Ccons 1::[2;31=11; 2; 3]

- map List.map succ [1;2;3] = [2;3;4]

List types

el::2::[] : int list
“wombat”::"numbat"::[] : string list
e \What type of listis []7?
- [1:
val it : 'a list
e Polymorphic type
- 'als atype variable that represents any type
-1::[] : int list

-Ya”::[] : string list

Functions on Lists

Let's define product..

> let rec product nums =
if (nums = []) then
1
else
(List.head nums)
* product (List.tail nums) ;;

val product : int list -> int

> product [5;
val it :

Pattern Matching

Pattern matching

A pattern is built from
-values,
-(de)constructors,

-and

Tests whether values match "pattern’

If yes, values bound to variables in pattern

Pattern matching

let rec product nums =
if (nums = []) then
1

else
(List.head nums)
* product (List.tail nums)

Using patterns..

let rec product nums =
match nums with
| [] -> 1
| xX::xs -> x * product xs

Pattern matching on integers

Write a function 1istOfInts that returns a
list of integers from zero to n.

let rec 1listOfInts n =
match n with

| 0 => [0]
| 1 -> 1

1listOfInts (i -

Oops! This returns the list backward.

Let's flip it around.

1)

Revisiting local declarations

Let's fix our code the lazy way..

let 1listOfInts n =
let rec 1li n =
match n with
| 0 -=> [0]
| 1 -> i

listOfInts (i - 1)
1li n |> List.rev

. by defining a function inside our function.

Pattern matching on lists

e Remember, a list is one of two things:
- []
- <first elem> :: <rest of elems>
-EBEg., [1; 2; 3] = 1::[2,3] = 1::2::
= 1::2::3::1]

e Can define function by cases..

let rec length xs =
match xs with

| T[] -> 0
| x::xs -> 1 + length xs

(3]

Pattern matching on tuples

Cartesian product..

let rec cartesianProduct xs ys =
match xs,ys with
| [] . => 1]
| L1 => 11

| x::xs’, ->
let zs = ys |> List.map (fun y ->
zs @ cartesianProduct xs’ ys

(x,v))

Patterns in declarations

e Patterns can be used in place of variables

e Most basic pattern form
—let <pattern> = <exp>

e Examples
- let x = 3
—let tuple = ("moo", “cow")
- let (x,y) = tuple
—let myList = [1; 2; 3]
—let w::rest = myList
—let v:: = myList

Recap & Next Class

Today we covered:
Logical operations
unit datatype
Lists
Pattern matching

Next lecture:

ADTs & advanced F#

