CSCI 334:
Principles of Programming Languages
Lecture 9: Type Inference
Instructor: Dan Barowy
Williams

Midterm Exam
-After you return. Date TBD.

Announcements

-Lab 5 due date is Sunday at 11:59pm. But if you can't get it done, just let me know when you can.
-"Course Changes"

Announcements

- We will navigate the chaos together.
- Be proactive; we understand and we want to help
- The situation is unreasonable, we are not
- Remember, nothing about this is fair, but nothing about this is anyone's fault. We have to be good to each other and to ourselves.
- There is more than CS334 in our lives.

Outline

1. Type inference
2. Q\&A

Study tip

Just do your best.

Remember: labs are practice. Practice makes perfect.

Remember: you can resubmit labs.

Remember: you can resubmit the midterm.

This course is going to change

See the "Course Changes" section of the course
webpage

Your crazy awesome TAs are actually available this weekend! We will update the schedule soon...

Colin: 11am-8pm on Saturday

Type checking \& type inference
Finally-cool things enabled by the lambda calculus!

Type checking

 (or, "how does my compiler know that my expression is wrong?")let $\mathrm{f}(\mathrm{x}: i n \mathrm{t})$: int $=$ "hello" +x

```
let f(x:int) : int = "hello" + x;;
```

stdin $(1,32)$: error $F S 0001:$ The type 'int' does not match the type 'string'

Type checking

step 1: convert into lambda form

```
let f(x:int) : int = "hello" + x
```

$\mathrm{f}=\lambda \mathrm{x}$. "hello " +x convert into λ expression
$\mathrm{f}=\lambda \mathrm{x} \cdot((+$ "hello ") x) assume + = $\lambda \mathrm{x} \cdot \lambda y \cdot((\mathrm{x}+\mathrm{y}))$

The purpose of this step is to make all of the parts of an expression clear

Type checking

step 2: generate parse tree
f = $\lambda x .((+$ "hello ") x)
f has form λx. ((EE) E)

Type checking

step 4: check that types are used consistently

1. Start at the leaves
2. Do type mismatches arise?

$$
\text { int } \rightarrow \text { int } \rightarrow \text { int @ string }
$$ YES, TYPE ERROR

Yes = type error
No = type safe
3. if yes, stop and report first mismatch

Type checking

step 3: label parse tree with types

```
read ":" as "has type"
```


Type inference

notice that we had a typed expression

```
let f(x:int) : int = "hello " + x
```

what if, instead, we had

```
let f(x) = "hello " + x
```

$?$

Hinley-Milner algorithm

- Hindley and Milner invented algorithm independently.
- Infers types from known data types and operations used.
- Depends on a step called "unification".
- I will demonstrate informal method for
unification; works for small examples

Type inference

step 1: label parse tree with known/unknown types
J. Roger Hindley

$$
\begin{aligned}
& \text { let } f(x)=5+x \\
& f=\lambda x \cdot((+5) x)
\end{aligned}
$$

Hinley-Milner algorithm

Has three main phases:

1. Assign known types to each subexpression
2. Generate type constraints based on rules of $\boldsymbol{\lambda}$ calculus:
a. Abstraction constraints
b. Application constraints
3. Solve type constraints using unification.

Type inference

it is often helpful to have types in tabular form

subexpression	type
	int \rightarrow int \rightarrow int
5	int
$(+5)$	r
x	s
$(+5) x$	t
$\lambda x \cdot((+5) x)$	u

Type inference

step 2: generate type constraints using $\boldsymbol{\lambda}$ calculus

```
E ::= x variable
    | \lambdax.E abstraction
    | EE function application
```

Abstraction rule: If the type of x is a and the type of E is b , and the type of $\lambda \mathrm{x} . \mathrm{E}$ is c , then the constraint is $\mathrm{c}=\mathrm{a} \rightarrow \mathrm{b}$.
Application rule: If the type of E_{1} is a and the type of E_{2} is.b, and the type of $\mathrm{E}_{1} \mathrm{E}_{2}$ is c , then the constraint is $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{c}$.

Type inference

step 3: unify

Start with the topmost unknown. What do we know about r?

$$
\begin{aligned}
& \text { int } \rightarrow \text { int } \rightarrow \text { int }=\text { int } \rightarrow r \\
& r=\text { int } \rightarrow \text { int }
\end{aligned}
$$

Type inference

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
(+5)	r	int \rightarrow int \rightarrow int $=$ int \rightarrow r
x	S	n / a
$(+5) \mathrm{x}$	t	$r=s \rightarrow t$
入x. (+ 5) x)	u	$u=s \rightarrow t$

Type inference

step 3: unify

Eliminate r from the constraint.

Type inference step 3: unify subexpression type constraint		
	$\begin{aligned} & \text { int } \rightarrow \text { int } \rightarrow \text { int } \\ & \text { int } \\ & r=\text { int } \rightarrow \text { int } \\ & s \\ & t \\ & u \end{aligned}$	$\begin{aligned} & \mathrm{n} / \mathrm{a} \\ & \mathrm{n} / \mathrm{a} \\ & \text { int } n \text { int } \rightarrow \text { int }=\text { int } \rightarrow \text { int } \rightarrow \text { int } \\ & \text { n/a } \\ & \text { int } \rightarrow \text { int }=s \rightarrow t \\ & \mathrm{u}=\mathrm{s} \rightarrow \mathrm{t} \end{aligned}$
Eliminate r from the constraint.		

Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
(+5)	$r=$ int \rightarrow int	int \rightarrow int \rightarrow int $=$ int \rightarrow int \rightarrow int
x	$s=i n t$	n / a
$(+5) \mathrm{x}$	$t=$ int	int \rightarrow int $=s \rightarrow t$
$\left.\lambda \mathrm{x} .\left(\begin{array}{l}\text { (}\end{array}\right) \mathrm{x}\right)$	u	$u=s \rightarrow t$

Eliminate s and t from constraint.

Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
$(+5)$	$r=$ int \rightarrow int	int \rightarrow int \rightarrow int $=$ int \rightarrow int \rightarrow int
x	$s=$ int	n / a
$(+5) \mathrm{x}$	$t=$ int	int \rightarrow int $=$ int \rightarrow int
$\lambda x .(+5) x)$	u	$u=$ int \rightarrow int

What do we know about u?

$$
\mathrm{u}=\text { int } \rightarrow \text { int }
$$

Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
$(+5)$	$r=$ int \rightarrow int	int \rightarrow int \rightarrow int $=$ int \rightarrow int \rightarrow int
x	$s=$ int	n/a
$(+5) x$	$t=$ int	int \rightarrow int $=$ int \rightarrow int
$\lambda x .(+5) x)$	$u=$ int \rightarrow int	int \rightarrow int $=$ int \rightarrow int

Done when there is nothing left to do.

Sometimes unknown types remain.
This means that the function is polymorphic. We'll talk more later!

Completed type inference

$$
\begin{aligned}
& \text { let } f x=5+x \\
& f=\lambda x \cdot((+5) x)
\end{aligned}
$$

Wrap up

Stay Safe and Healthy

- It's not going to be easy, but we will work together to make the course a success
- We want to support you! BUT
- It is up to you to let us know when things aren't going as planned
- We know what it is like to be stuck and not understand something...
- Do not accept defeat alone.We are a team.

Stay Safe and Healthy

- Find routines and practices that work for you
- Want a study partner from CS334?
- Reach out
- Hard time concentrating?
- "Work Uniform", mynoise.net, daily planner
- Get the big picture, but not the details?
- Teach a friend!
- Easily distracted?
- draw pictures on paper, take physical notes, get away from a computer

Stay Safe and Healthy

- If things come up in your life outside of class, let us know
- We will find ways to accommodate your situation
- If things come up in class, let us know
- We will find ways to resolve issues on our end

Recap \& Next Class
Today we covered:

Type inference

Next class:
TBD - enjoy your break!

