
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: Type Inference

Announcements

•Lab 5 due date is Sunday at 11:59pm.  But if you 
can’t get it done, just let me know when you can. 

•“Course Changes”

Midterm Exam

•After you return.  Date TBD.

• We will navigate the chaos together.
• Be proactive; we understand and we want to help
• The situation is unreasonable, we are not

• Remember, nothing about this is fair, but nothing 
about this is anyone’s fault. We have to be good to 
each other and to ourselves.
• There is more than CS334 in our lives.
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Study tip

Grades are important, but they are 
not the most important thing in life.

Shoulda got 
better grades

Study tip

Remember: labs are practice. Practice makes perfect.

Just do your best.

Remember: you can resubmit labs.

Remember: you can resubmit the midterm.

Outline

1. Type inference 

2. Q&A
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This course is going to change

See the “Course Changes” section of the course 
webpage

Your crazy awesome TAs are actually available this 
weekend!  We will update the schedule soon…

Colin: 11am-8pm on Saturday



Type checking & type inference

Finally—cool things enabled 
by the lambda calculus!

Type checking

let f(x:int) : int = “hello” + x

(or, “how does my compiler know 
that my expression is wrong?”)

  let f(x:int) : int = "hello" + x;; 
  -------------------------------^ 

stdin(1,32): error FS0001: The type 'int' does not 
match the type 'string'

A note about “curried” expressions

let f(a: int, b: int, c: char) : float = …

f is int -> int -> char -> float

let f(a: int)(b: int)(c: char) : float = …

let f a b c = …

f = λa.λb.λc.(…)

Type checking

let f(x:int) : int = “hello” + x 

f = λx.“hello ” + x 

f = λx.((+ “hello ”) x)

convert into λ expression

assume + = λx.λy.((x + y))

step 1: convert into lambda form

The purpose of this step is to make all of the parts 
of an expression clear



Type checking

f = λx.((+ “hello ”) x) 

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves 

2. Do type mismatches arise? 
Yes = type error 
No = type safe 

3. if yes, stop and 
report first 
mismatch

int → int → int @ string 

YES, TYPE ERROR

:int → int

Type checking Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f(x) = “hello ” + x

?



Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm 
independently. 

• Infers types from known 
data types and 
operations used. 

• Depends on a step 
called “unification”. 

• I will demonstrate 
informal method for 
unification; works for 
small examples

Hinley-Milner algorithm

1. Assign known types to each subexpression 

2. Generate type constraints based on rules of λ calculus: 

a. Abstraction constraints 

b. Application constraints 

3. Solve type constraints using unification.

Has three main phases:

Type inference

let f(x) = 5 + x 

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

it is often helpful to have types in tabular form

subexpression type

+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

Type inference



step 2: generate type constraints using λ calculus

Abstraction rule: If the type of x is a and the type of E is b, and the 
type of λx.E is c, then the constraint is c = a → b.

E ::= x 

  |  λx.E 

  |  EE

variable

function application

abstraction

Application rule: If the type of E1 is a and the type of E2 is b, and 
the type of E1E2 is c, then the constraint is a = b → c.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Start with the topmost unknown.  What do we know about r?

int → int → int = int → r 
r = int → int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t  
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t 
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t 
s = int 
t = int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t 
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
u = int → int

step 3: unify

What do we know about u?

u = int → int

Type inference



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
u = int → int

step 3: unify

Type inference

Eliminate u from constraint.

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Sometimes unknown types remain.

Type inference

This means that the function is polymorphic. We’ll talk more later!

Completed type inference

let f x = 5 + x 

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int

Wrap up



Stay Safe and Healthy

• It’s not going to be easy, but we will work 
together to make the course a success
• We want to support you! BUT

• It is up to you to let us know when things aren’t going 
as planned

• We know what it is like to be stuck and not 
understand something…
• Do not accept defeat alone. We are a team.

Stay Safe and Healthy
• If things come up in your life outside of class, let 

us know
• We will find ways to accommodate your situation

• If things come up in class, let us know
• We will find ways to resolve issues on our end

Stay Safe and Healthy
• Find routines and practices that work for you
• Want a study partner from CS334?
• Reach out

• Hard time concentrating?
• “Work Uniform”, mynoise.net, daily planner

• Get the big picture, but not the details?
• Teach a friend!

• Easily distracted?
• draw pictures on paper, take physical notes, get away from 

a computer 

Remote Access

VPN

SSH



Q&A

Recap & Next Class

Today we covered:

Next class:

TBD— enjoy your break!

Type inference


