
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 8: Computability

Announcements

•Lab 5 is a solo lab.

•Scheduled power outage: this Sunday at 10pm
until Monday at 9am

•All CS lab machines

•All CS servers

•Wash hands, cough into sleeve, don’t touch your
face. Stay home if you are not feeling well.

Announcements

•No colloquium this week :(

Midterm Exam

•Friday, March 20, in class.

Outline

1. Quiz

2. Total and partial functions

3. Halting problem

4. Reduction-style proofs

Quiz

Computability Computability

i.e., what can and cannot
be done with a computer

A function f is computable if there
is a program P that computes f.

In other words, for any (valid) input x, the
computation P(x) halts with output f(x).

example

P(x) is:
f(x) = x + 5

valid inputs are integers

computable?
yes.

Computability

example

P(x) is:
f(x) = 5/x

valid inputs are integers

computable?
yes, partially.

Computability

f: A→B is a subset f ⊆ A×B subject to

Total Function

1. for every a∈A, there is a b∈B with ⟨a,b⟩∈f totality

single valued2. if ⟨a,b⟩∈f and ⟨a,c⟩∈f then b=c

e.g,
f(x) = x + 5

f: A→B is a subset f ⊆ A×B subject to

Partial Function

1. for every a∈A, there is a b∈B with ⟨a,b⟩∈f totality

single valued2. if ⟨a,b⟩∈f and ⟨a,c⟩∈f then b=c

e.g,
f(x) = 5/x

The “graph” of a function

f(x) = x + 5

{<x, x+5> | x ∈ ℤ}

{<x, x+5> | x is an integer}

The “graph” of a function

f(x) = 5/x

{<x, 5/x> | x ∈ ℤ ∧ x ≠ 0}

Undefinedness

x/0
Activity

The Halting Problem

Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

How might this work?
Clarifications:

P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

The Halting Problem

Decide whether program P halts on input x.

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

Notes on the proof

We utilize two key ideas:

• Function evaluation by substitution
• Reductio ad absurdum (proof form)

The form of the proof is reductio ad absurdum.

Literally: “reduction to absurdity”.

Start with axioms and presuppose the
outcome we want to show.

Then, following strict rules of logic, derive
new facts.

Finally, derive a fact that contradicts
another fact.

Conclusion: the presupposition must be false.

Notes on the proof

Reductio ad Absurdum

A1 A2 A3

H

F1

F2

¬A3

¬

😧

Function Evaluation by Substitution

def addone(x):
 return x + 1

addone(1)

[1/x]x + 1

1 + 1

λx.(+ x 1)1

[1/x](+ x 1)

(+ 1 1)

22

The Halting Problem

Notes on the proof:

The proof relies on the kind of substitution
that we’ve been using to “compute” functions
in the lambda calculus.

Remember: we are looking to produce a
contradiction.

The proof is hard to “understand” because the
facts it derives don’t actually make sense.
Don’t read too deeply.

The Halting Problem: Proof

Suppose:

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

Construct:

DNH(P) = { if Halt(P,P) is true, while(1){}

returns false otherwise

{Halt always
halts!

{
DNH

does not
always halt!

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = { if Halt(P,P) is true, while(1){}

returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = { if P(P) halts, run forever

returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = { if P(P) halts, run forever

halt

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if P(P) halts.
DNH(P) will halt if P(P) runs forever.

Rewrite:

DNH(P) = { if P(P) halts, run forever

halt

The Halting Problem

Isn’t DNH itself a program?

What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

P PP
P PP

The Halting Problem

Isn’t DNH itself a program?

What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

DNH DNHDNH
DNH DNHDNH

This literally makes no sense. Contradiction!

Therefore, the Halt function cannot exist.

What was our one assumption? Halt exists.

Reductions

2

Plus

1

3
Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is impossible to compute.

Halt0

true

int main(…){
…
return 0
}

Reductions

Is Halt0 computable?

A function f(i) halts not if and only if f does not halt on input i.

Halt0

true

Reductions

Assume that Halt0 is computable.

Construct Halt using Halt0.

Halt

false

int
main(… 1

(e.g., it’s in your standard library)

Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is impossible to compute.

Reductions

If we can do it, what does this mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int
main(… 1

Reductions

(on board)

We can use the Halting Problem to show that other
problems cannot be solved by “reduction” to the
Halting Problem.

We cannot tell, in general…

… if a program will run forever.

… if a program will eventually produce an error.

… if a program is done using a variable.

Reductions

Generality

def myprog(x):
 return 0

def Halt(P,x):
 if(P = “def myprog(x):\n\treturn 0”):
 return true
 else
 return false

Recap & Next Class

Today we covered:

Next class:

More computability

Total and partial functions

Halting problem

Reductions

