CSCl 334:
Principles of Programming Languages

Lecture 7: Lisp, part |l

Instructor: Dan Barowy
Williams

Announcements

-Lab 4 due Sunday by 11:59pm

-Scheduled power outage: this Sunday at 10pm
until Monday at gam

«All CS lab machines
-All CS servers
-Colloquium: 2:30pm in Wege Auditorium (TCL 123)

-‘Adventures in Hybrid Architectures for
Intelligent Systems,” Nate Derbinsky,
Northeastern

Outline

1. Happy/sad cards
2. More LISP
3. Garbage Collection

technical

high-level \"4

(theoretical). .
O

AN orientation
(C++)

’\ technical

%V ! communication
Ry o

high-level
(theoreticall‘; -
knowledge, o

object
AN orientation
(C++)

technical
communication

high-level
(theoretical) .~ . -
knowledge >,

LISP & | ey P
“;O.,J‘ functional‘9 O i

programming

. \ orientation
(C++)

** | communication
Vo)

A technical
D
s

" low-level
knowledge (C)

|
high-level
(theoretic »
knowled® O

(%

object
AN orientation
(C++)

high-level
(theoretical). .
knowledge -4 R

%)
- chitzctur

object
orientation
(C++)

P4
big questions

low-level
knowledge (C)
high-level
(theoretical)... o
knowledge
))/functional ~—

orientation
(C++)

N

uw&(ﬁgf“f

technical

communication
1%

y /'i
big questions

g low-level
knowledge (C)

A technical
%ommunicat'on

mp&fﬁé .

Jfunctional >—

high-level
(theoretical). . .
knowledge: °

orientation
(C++)

Midterm Exam

-Friday, March 20, in class

Lisp syntax: data structure

« Historically, Lisp has exactly one data structure:
the cons cell.

* The "cons cell” allows ‘composing” values

(cons “hello” 4)

/1 \
v X

“hello” 4

Lisp syntax: lists

E.g. listsin Lisp are just made out of cons cells

(cons 1 (cons 2 (cons 3 nil)))

—>

—
|

|
v v
2

1

SR

* Lisp has a shorthand for this:
‘(1 2 3)

‘Recursive Functions [.]" (McCarthy)

Lisp C
car head
cdr tail
cons prepend

Lisp syntax: car and cdr

Access the first element of a cons cell with car

(car (cons 1 2)) =1

Access the second element with cdr

(cdr (cons 1 2)) = 2

What's the value of the following expression?
(car ‘(1 2 3))
What about this?
(cdr (1 2 3))

Lisp syntax: functions

» Everything else is a function (or “special form”)
« There are a bunch of built-in functions

(car ..)

(cdr ..)

(append ..), etc.

+ And you can define your own

(defun my-func (arg) (value))

Lisp syntax: conditionals

* InLisp, if/elseis called cond

(cond (testy valueq)

)
« £Eg, (cond ((eg 1 x) (cons x xs))
e Does the same as the Java

if (x == 1) {

xs.add (x) ;

)

Lisp syntax: conditionals

* condis more generalthan i f/else.
(cond (testy wvalue:)

(testy valuey)

demo

Lisp syntax: conditionals

(only-positives (xs)
(cond
; empty list
((eq xs nil) nil)
; element is positive
((> (car xs) 0)
(cons (car xs) (only-positives (cdr xs)))
)
; element is not positive

(t

(only-positives (cdr xs))

Three amazing concepts from LISP

- First-class functions

- Higher-order functions
-map
-fold

a function

“first class” function

3
(-—) @; % .
‘N) Rule Functions are values in a
: +1 E 55 functional programming language
) - — 3 ou
4
a function
3
' 7
) (U = ¢
‘N o/ @
o5 - Rule ~
:\ +1 (°o -
H—-—-‘——'/° oV

map

Intuition:

Like a for loop, but without mutable variables

(+ x 1) ‘(1 2 3 4 5))

(mapcar (lambda (x)

‘(1 2 34 5)

fold

Intuition:

(reduce #'+

fold left

'(1 2 3) :initial-value 0)

acc = 0,

acc = 0+1,

returns acc =

‘(1 2 3)
‘(2 3)
acc = 1+2, Y (3)

acc = 3+3, nil

6

fold right

(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

£
‘ '5 ;EE? ‘(1 2 3), acc = 0
/\\q :
e

(1 2), acc = 0+3
(1), acc = 2+3

what does this print?

(reduce #'append ' ((2) (0))

:initial-value '"(w 1 1 1 1

am s))

d A
’d?_tj N _,:;?7 nil acc = 5+1
— returns acc = 6
how about?

(reduce #'append ' ((2) (0))
:initial-value '"(w i 1 1 1 a m s)

:from-end t)

fold

structural recursion — fold it!

(in a nutshell: any problem that recurses on a

nfusfasfanfiz

list length

tree height

subset of input)

evaluation

That's pretty much it!

+ See "LISP Notes' for all the syntax you need to

know on course webpage

Activity

list length

(length-1list ‘(1 2 3 4 5 6)) > 6

Activity

Cow

/\
Badger Eel

- /\
Aardvark Donkey Fox

Activity

Write a function (using mapcar) that replaces the
number 3 in a list with the

number 6

(mapcar #'my-replace (1 2 3 4 5 6))
(1 2 6 4 5 6)

Activity

Write a function (using mapcar) that replaces the
number 3 in a list with the

number 6
(defun my-replace (x)
(cond
((equal x 3) 6)
(t x)

)

(mapcar #'my-replace (1 2 3 4 5 6))
(1 2 6 4 5 0)

Automatic Memory Management

Memory management

« C
When you want to use a variable, you have to
allocate it first, then decallocate it when done.
MyObject *m = malloc(sizeof (MyObject));
m->foo = 2;
m->bar = 3;
. do stuff with m ..

free (m);

Memory management

+ Java:
You barely need to think about this at all.
MyObject m = new MyObject (2, 3);
. do stuff with m ..
- Same with LISP!

(cons 2 3)

Lisp memory model

Cons cell: - |Fadese T [pecement]
Atom: RG]

(cons 'A (cons 'B (cons 'C nil)))

Sharing data
(@ (b)

» Which is the result of evaluating
(cons (cons ‘A ‘B) (cons ‘A ‘B)) ?

Garbage collection

Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value

used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly

integrated into a programming language runtime.,

‘mark-sweep’
garbage collection

storage
location "mark” bit

|

1. Mark reachable cells

90 — // | \Iﬂ o[o] 90 — // | \\1 Lo | o]
0 0 0 0
N Al Dllel o] N A | Dllel o]
o h T o 0 h T ol
]]
ENENG e | o ENENG e | o
| o] | o]
1. Mark reachable cells 1. Mark reachable cells
90 — // I \\III Lo | o] 90 — // I \\III Lo | o]
N A [[t)lel Jof N A [Pl le] i
& N T o K N T o
ENENG e | o ENENG e | o
| o] | o]

1. Mark reachable cells

1. Mark reachable cells

90 — // I \1 o] o] 90 — // I \\1 o] o]
A 1 c 1 A 1 c 1
N A [DBifle] 1] N o [DB le] [t
k N T Dol K N T Dol
—]
ENENG e[o ENENG e[o
. [o] L [1]
2. Free ("sweep”) unreachable cells 3. Clear tags
Iy 2N o [hE
1 1 0 0
N [~ | f]lel] N A | pf]lec] o]
0 < 0 N
KNG EEENG
L [1] . [o]

More lambda calculus practice?

1.

(AX.x) (AX.xx) (Ax.xa)
reduces to: aa

(Ax.X) (Ay.yY) (Az.za)
reduces to: aa
(Ax.Ay.xyy) (Aa.a)b
reduces to: bb

(AX.xx) (Ay.yX)z
reduces to: xxz

(Ax. (Ay. (xy))Y)2
reduces to: zy

Recap & Next Class

Today we covered:

More LISP

Garbage collection

Next class:

Halting Problem

