
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: Lisp, part II

Announcements
•Lab 4 due Sunday by 11:59pm

•Scheduled power outage: this Sunday at 10pm
until Monday at 9am

•All CS lab machines

•All CS servers

•Colloquium: 2:30pm in Wege Auditorium (TCL 123)

• “Adventures in Hybrid Architectures for
Intelligent Systems,” Nate Derbinsky,
Northeastern

Outline

1. Happy/sad cards

2. More LISP

3. Garbage Collection

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

big questions low-level
knowledge (C)

high-level
(theoretical)
knowledge LISP &

functional
programmingMIDTERM

F#

language
architecture

object
orientation  

(C++)

technical
communication

Midterm Exam

•Friday, March 20, in class

Lisp syntax: data structure

• Historically, Lisp has exactly one data structure:

the cons cell.

• The “cons cell” allows “composing” values

(cons “hello” 4)

“hello” 4

• E.g., lists in Lisp are just made out of cons cells

(cons 1 (cons 2 (cons 3 nil)))  
 
 
 

• Lisp has a shorthand for this:

 ‘(1 2 3)

Lisp syntax: lists

1 2 3

∅

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

cdr tail

cons prepend

Lisp syntax: car and cdr

• Access the first element of a cons cell with car

(car (cons 1 2)) = 1

• Access the second element with cdr

 (cdr (cons 1 2)) = 2

• What’s the value of the following expression? 
(car ‘(1 2 3))

• What about this?  
(cdr ‘(1 2 3))

Lisp syntax: functions

• Everything else is a function (or “special form”)

• There are a bunch of built-in functions

(car …)

(cdr …)

(append …), etc.

• And you can define your own  
(defun my-func (arg) (value))

Lisp syntax: conditionals

• In Lisp, if/else is called cond

(cond (test1 value1)

 …)

• E.g., (cond ((eq 1 x) (cons x xs)) …)

• Does the same as the Java  
if (x == 1) {  
 xs.add(x);  
} …

Lisp syntax: conditionals

• cond is more general than if/else.

(cond (test1 value1)

 (test2 value2)

 …)

demo

Lisp syntax: conditionals

(defun only-positives (xs)

 (cond

 ; empty list

 ((eq xs nil) nil)

 ; element is positive

 ((> (car xs) 0)

 (cons (car xs) (only-positives (cdr xs)))

)

 ; element is not positive

 (t

 (only-positives (cdr xs))

)

)

)

Three amazing concepts from LISP

•First-class functions

•Higher-order functions

•map

• fold

a function

+1

3

4

“first class” function

Functions are values in a

functional programming language

a function

+1

3

4

a function

map

1

3

2

4

5

1

3

2

4

5

Like a for loop, but without mutable variables

(mapcar (lambda (x) (+ x 1) ‘(1 2 3 4 5))

Intuition:

map

map

‘(1 2 3 4 5)
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

‘(2 3 4 5 6)

fold

Intuition:

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

acc = 0+1, ‘(2 3)

acc = 1+2, ‘(3)

acc = 3+3, nil

returns acc = 6

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

‘(1 2), acc = 0+3

‘(1), acc = 2+3

nil acc = 5+1

returns acc = 6

what does this print?

(reduce #'append '((2) (0))

 :initial-value '(w i l l i a m s))

how about?

(reduce #'append '((2) (0))

 :initial-value '(w i l l i a m s)

 :from-end t)

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

That’s pretty much it!

• See “LISP Notes” for all the syntax you need to

know on course webpage

Activity

list length

(length-list ‘(1 2 3 4 5 6)) ↠ 6

Activity

Cow

Badger Eel

Aardvark Donkey Fox

Write a function (using mapcar) that replaces the
number 3 in a list with the

number 6

(mapcar #’my-replace ’(1 2 3 4 5 6))
 ’(1 2 6 4 5 6)

Activity

Write a function (using mapcar) that replaces the
number 3 in a list with the

number 6
 (defun my-replace (x)
 (cond
 ((equal x 3) 6)
 (t x)
)
)
(mapcar #’my-replace ’(1 2 3 4 5 6))
 ’(1 2 6 4 5 6)

Activity

Automatic Memory Management

Memory management

• C: 
When you want to use a variable, you have to

allocate it first, then decallocate it when done.

MyObject *m = malloc(sizeof(MyObject));

m->foo = 2;

m->bar = 3;

… do stuff with m …

free(m);

Memory management

• Java: 
You barely need to think about this at all.

MyObject m = new MyObject(2,3);  
… do stuff with m …

• Same with LISP!

(cons 2 3)

Lisp memory model

Cons cell:

Atom:

(cons 'A (cons 'B (cons 'C nil)))

Address Decrement

Atom A

Atom B

Atom C

nil

Atom value

Sharing data

A B A B A B

(a) (b)

• Which is the result of evaluating  
 (cons (cons ‘A ‘B) (cons ‘A ‘B)) ?

Garbage collection

A

B

C

...

D

E

Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly
integrated into a programming language runtime.

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location “mark” bit 1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells 3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

More lambda calculus practice?

1. (λx.x)(λx.xx)(λx.xa)  
reduces to: aa

2. (λx.x)(λy.yy)(λz.za)  
reduces to: aa

3. (λx.λy.xyy)(λa.a)b  
reduces to: bb

4. (λx.xx)(λy.yx)z  
reduces to: xxz

5. (λx.(λy.(xy))y)z  
reduces to: zy

Recap & Next Class

Today we covered:

Next class:

Halting Problem

More LISP

Garbage collection

