CSCl 334

Principles of Programming Languages

Lecture 6: Lisp

Instructor: Dan Barowy
Williams

16
14
12
10

oN B O

| am happy about...

18
16
14
12
10

oON B O

| am sad about...

| | | | .

° &
& Q/\Q \,SQL’ ‘.&e“’ @qx ())\Q‘o

& & ol 2 >
S & 2 1%
S S & N S
> > > &
o & o Q&

& & « ®

< 3

(Ax.xx) (Ay.yX)z
reduces to: xxz

Quiz

Life tip
‘Growth" mindset

“In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence!

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Individuals with a "growth" mindset are more likely to continue working hard—
and succeed—despite setbacks.

This course is about priming your brain with
different ways of thinking about programming.

Why am | telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

You will be a clearer thinker
and a better programmer.

How this course works

-Lots of new languages
‘Not enough class time to cover all features
(e.g., Java over the course of 134-136: 1 year!)

‘Do the assigned reading and seek additional
material on your own (on teh Googles)

‘Help hours!!!

LISP

John McCarthy

Lisp was invented for Al research

04000 ORG 2048

04000 -0 53400 5 04011 IXD P1, 34K
04001 -0 63400 4 04020 P4 SXD P2,K
04002 0 50000 1 04022 CLA A+,
04003 1 77777 1 Okook TXI P6,J,-1
04004 -2 00001 4 04017 P6 TNX P5,K,1
04005 0 76500 O 00043 P3 LIRS 35
04006 0 26000 0 04046 FMP X
04007 0 30000 1 Oko22 FAD A+1,7
0k010 1 77777 1 04011 TXI P1,3,-1
04011 2 00001 4 04005 P1 TIX P3,K,1
04012 0 60100 O 04051 STO S
04013 0 56000 0 04050 e z
04014 0 26000 O O4O4T FMP Y
04015 0 30000 0 04051, FAD'S
04016 -3 77754 1 TXL OUT, J,
-R/2+1

0017 0 60100 0 04050 P5 STO 2
04020 1 00000 4 04001 P2 TXI Pk,K

00005 N EQU 5

00052 R EQU NeN+3KN+2

04021 A BSS R/2
0406 0 00000 0 00000 X
OLOKT 0 00000 0 00000 Y
04050 0 00000 0 00000 7
04051 0 00000 0 00000 S

00001 J EQU 1

00004 K EQU 4

04000 END Ph-1

00000 oUT

704 Assembly (circa 1954)
(From Coding the MIT-IBM 704 Computer)

Oll4
115
C
(5 READ IN INPUT DATA ilé;
11
j IF (ISYS-9S) 401,403,401 Siic
403 READ TAPE 3,(G(1),I=1,8044) 0119
REWIND 3 S
IF (SENSE SWITCH &) 651,719 lez!
401 ISYS=99 Jiii
[FROZ=0 0
PAUSE 11111 o124
429 CALL' INPUT uigz
651,651,433 o
433 VI}F{I(T:)LLTPL,‘T))Y-‘AP‘ 61443, HX.VXPLS,VXNIN'HF'VFPLS.VFNIN S
1, (ELMT(I),B) o 1=1,L1) ety o127
1 (ELMT(I),BOX(I1),BOF(I), . ol 2z oE))
443 l’L‘k*‘t-T (10K10XIDANT 3E16.6/10H FUEL 3E1 ' oo
: 0130
(L‘ RIGHT ADJUST ELEMENT SYMBOLS 451
0132
C
LO 447 K=1,L 1153
TMLM = ELMT(K) Si5a

ELMT(K) = ARSF(24, TMLM)

FORTRAN (circa 1950)
(From NASA Technical Note D-1737)

(defun fact (n)
(cond ((eg n 0) 1)
(t (* n (fact (- n 1))))))

LISP (circa 1958)

LISP is a "functional” language

» programs are modeled after math. functions

* no statements, only expressions

* nNo ‘'mutable’ variables, only declarations

« therefore, the effect of running a program
("evaluation”) is purely the effect of applying a

function to an input.

LISP is a "functional” language

3

@ N O @
W O e
D ., |E

e S o—/° ou

4

(defun add-one (n) n + 1)

LISP is a "functional” language

dirty house

CU> €
‘.N o/@

Rule

ﬂ clean

o0
(4 S) > ou
o o o

clean house

(defun cleaning-robot (dirt) ..)

Big functions are ‘composed
tle functions

ouse

dlrty

clean house

(defun cleaning-robot (dirt) ..)

Program correctness is easier to achieve

& -

clean house

l.e., whole is correct if pieces are correct.

LISP is deeply influenced
by the lambda calculus

« allcode is either a value, a function, or a function
application
value: 1
function of two values: (+ 1 1)

+ syntaxis (mind-numbingly) regular
functions: (function-name arguments ..)
values: anything that is not a function

+ evaluating a function produces a value:
(+ 1 1)=2

Statements vs. expressions

« Astatement is an operation that changes the state of
the computer
Java: i++
value stored at location i incremented by one

« An expression is a combination of values and
operations that yields a new value
Lisp: (+11)
evaluating + withiand 1 returns i + 1

 Lisp has only expressions.

REPL
(read-eval-print loop)

Batch mode

Mutable variables

* If you can update a variable in a language, you
have mutable variables

Java: int 1 = 3;
i = 4;
« Notice that both lines of code are statements

 Lisp does not have mutable variables

Immutable variables

» Variables cannot be updated in Lisp
Lisp: (defun my-func (i) ..)
(my-func 3)
or the shorter
((lambda (1) ..) 3)
» Notice that all of the above are expressions
* In fact, functions are the only way to bind

values to names in (pure) Lisp

Lisp syntax: atoms

* Anatom is the most basic unit of data in Lisp
4 Number
112.75 Number
“hello” String

‘foo Quoted symbol
t Boolean
nil Empty list

Lisp syntax: data structure

« Historically, Lisp has exactly one data structure:
the cons cell.

* The "cons cell” allows ‘composing” values

(cons “hello” 4)

/ 1\
v N

“hello” 4

Lisp syntax: lists

E.g. lists in Lisp are just made out of cons cells

(cons 1 (cons 2 (cons 3 nil)))

— —

W

| |
v v
1 2

* Lisp has a shorthand for this:
‘(1 2 3)

‘Recursive Functions [.]" (McCarthy)

Lisp c
car head
cdr tail
cons prepend

Lisp syntax: car and cdr

Access the first element of a cons cell with car
(car (cons 1 2)) =1

Access the second element with cdr

(cdr (cons 1 2)) = 2

What's the value of the following expression?
(car ‘(1 2 3))
What about this?
(cdr Y (1 2 3))

Recap & Next Class

Today we covered:

LISP

Next class:

More LISP

Garbage collection

