

"Growth" mindset

Life tip

"In a fixed mindset students believe their basic abilities, their intelligence, their talents, are just fixed traits. They have a certain amount and that's that, and then their goal becomes to look smart all the time and never look dumb. In a growth mindset students understand that their talents and abilities can be developed through effort, good teaching and persistence."

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford University)

Individuals with a "growth" mindset are more likely to continue working hard and succeed—despite setbacks.

Why am I telling you this?

This course is about priming your brain with different ways of thinking about programming.

Why am I telling you this?

You can **be a programmer** without these ideas.

But make the effort to internalize these concepts and you will see their application everywhere.

You will be a *clearer* thinker and a *better* programmer.

John McCarthy

02000		ORG JONG
04000 -0 53400 5 04011		IXD P1 JLK
		LAD 11,0TH
04001 -0 63400 4 04020	P4	SXD P2,K
04002 0 50000 1 04022		CLA A+1, J
04003 1 77777 1 04004		TXI P6, J, -1
04004 -2 00001 4 04017	Рб	TNX P5,K,1
04005 0 76500 0 00043	P3	LRS 35
04006 0 26000 0 04046		FMP X
04007 0 30000 1 04022		FAD A+1,J
04010 1 77777 1 04011		TXI P1, J,-1
04011 2 00001 4 04005	Pl	TIX P3,K,1
04012 0 60100 0 04051		STO S
04013 0 56000 0 04050		LDQ Z
04014 0 26000 0 04047		FMP Y
04015 0 30000 0 04051,		FAD S
04016 -3 77754 1		TXL OUT, J, -R/2+1
04017 0 60100 0 04050	P5	STO Z
04020 1 00000 4 04001	P2	TXI P4.K
00005	N	EQU 5
00052	R	EQU N#N+3#N+2
04021	Α	BSS R/2
.04046 0 00000 0 00000	x	
04047 0 00000 0 00000	Y	
04050 0 00000 0 00000	Z	
04051 0 00000 0 00000	S	
00001	J	EQU 1
00004	к	BOIL 4
04000	1	END P4-1
00000	OUT	
	001	
701 Accombly	, (.	$\operatorname{circo}(10 \Gamma A)$
704 ASSembly	- (I	UILA 1954)
, - ,	•	
From Coding the MIT	ΙE	DNA 704 Compu
rom Cound the Min-	• I E	SIMI 704 COMDU

		0114
С		0115
C	READ IN INPUT DATA	0116
С		0117
	IF (ISYS-99) 401,403,401	0118
403	READ TAPE $3, (G(1), 1=1, 8044)$	0119
	REWIND 3	0120
	IF (SENSE SWITCH 6) 651,719	0121
401	ISYS=99	0122
	IFRUZ=C	0123
	PAUSE IIIII	0124
429	CALL INPOT	0125
IF (L) 651,651,433		0126
433	WRITE DUTPOT TAPE BITTS INTERNAL	0127
	(EEMI(1), BOAR(1), BOAR(1), 1-1, C, AND FUEL 3E16.6/(1H A6, 2E20.8))	0128
443	FORMAT (TOPTOATDANT SETO-OFTON FOLL	0129
C	DICHT AD HIST ELEMENT SYMBOLS	0130
C	RIGHT ADJUST ELEMENT STHOULS	0131
L	00 447 8-1 1	0132
		0133
	IMLM = CLMI(N)	0134

(defun fact (n) (cond ((eq n 0) 1) (t (* n (fact (- n 1)))))) LISP (circa 1958)

FORTRAN (circa 1956) (From <u>NASA Technical Note D-1737</u>)

LISP is a "functional" language

- programs are modeled after math. functions
- no statements, only expressions
- no "mutable" variables, only declarations
- therefore, the effect of running a program ("evaluation") is purely the effect of applying a function to an input.

LISP is a "functional" language

• all code is either a value, a function, or a function application

value: 1

function of two values: (+ 1 1)

- syntax is (mind-numbingly) regular
 functions: (function-name arguments ...)
 values: anything that is not a function
- evaluating a function produces a value:
 (+ 1 1) =2

Statements vs. expressions

A statement is an operation that changes the state of
the computer

Java: i++

value stored at location i incremented by one

 An expression is a combination of values and operations that yields a new value

Lisp: (+ i 1)

evaluating + with i and 1 returns i + 1

• Lisp has only expressions.

Immutable variables

• Variables cannot be updated in Lisp

```
Lisp: (defun my-func (i) ...)
```

```
(my-func 3)
```

or the shorter

```
((lambda (i) ...) 3)
```

- Notice that all of the above are expressions
- In fact, functions are the only way to bind values to names in (pure) Lisp

Lisp syntax: atoms

- An **atom** is the most basic unit of **data** in Lisp
 - 4 Number
 - 112.75 Number
 - "hello" String
 - `foo Quoted symbol
 - t Boolean
 - nil Empty list

Lisp syntax: **car** and **cdr**

• Access the first element of a cons cell with car

(car (cons 1 2)) = 1

• Access the second element with cdr

(cdr (cons 1 2)) = 2

• What's the value of the following expression?

(car '(1 2 3))

What about this?
 (cdr '(1 2 3))

Recap & Next Class
Today we covered:
LISP
Next class:
More LISP

Garbage collection