
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: Lisp 0
2
4
6
8

10
12
14
16

writ
ing

 na
me o

n quiz

yo
ur h

at

gra
mmars

/pa
rsin

g

lam
bd

a c
alc

ulus C

I am happy about...

0
2
4
6
8

10
12
14
16
18

how
 to

 ta
ke

 no
tes

memory
err

ors

how
 to

 as
k fo

r h
elp

und
erst

and
ing la

bs

makef
iles

boxe
s a

nd
 arro

ws

lam
bd

a c
alc

ulus

I am sad about...

(λx.xx)(λy.yx)z
reduces to: xxz

Quiz

Life tip

“Growth” mindset

“In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence.” 

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Individuals with a "growth" mindset are more likely to continue working hard—
and succeed—despite setbacks.

Why am I telling you this?

This course is about priming your brain with
different ways of thinking about programming.

Why am I telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

You will be a clearer thinker
and a better programmer.

How this course works

•Lots of new languages

•Not enough class time to cover all features 
(e.g., Java over the course of 134-136: 1 year!)

•Do the assigned reading and seek additional

material on your own (on teh Googles)

•Help hours!!!

LISP

John McCarthy IBM 704

Lisp was invented for AI research
704 Assembly (circa 1954)

(From Coding the MIT-IBM 704 Computer)

FORTRAN (circa 1956)
(From NASA Technical Note D-1737) LISP (circa 1958)

(defun fact (n)
 (cond ((eq n 0) 1)
 (t (* n (fact (- n 1))))))

LISP is a “functional” language

• programs are modeled after math. functions

• no statements, only expressions

• no “mutable” variables, only declarations

• therefore, the effect of running a program

(“evaluation”) is purely the effect of applying a

function to an input.

LISP is a “functional” language

(defun add-one (n) n + 1)

3

4

+1

LISP is a “functional” language

(defun cleaning-robot (dirt) …)

dirty house

clean house

clean

Big functions are “composed”
of little functions

(defun cleaning-robot (dirt) …)

www

dirty house

clean house

Program correctness is easier to achieve

www

I.e., whole is correct if pieces are correct.

clean house

dirty house
LISP is deeply influenced
by the lambda calculus

• all code is either a value, a function, or a function

application

value: 1

function of two values: (+ 1 1)

• syntax is (mind-numbingly) regular

functions: (function-name arguments …)

values: anything that is not a function

• evaluating a function produces a value: 
(+ 1 1)=2

Statements vs. expressions

• A statement is an operation that changes the state of

the computer

Java: i++

value stored at location i incremented by one

• An expression is a combination of values and

operations that yields a new value

Lisp: (+ i 1)

evaluating + with i and 1 returns i + 1

• Lisp has only expressions.

REPL
(read-eval-print loop)

Batch mode

Mutable variables

• If you can update a variable in a language, you

have mutable variables

Java: int i = 3;  
 i = 4;

• Notice that both lines of code are statements

• Lisp does not have mutable variables

Immutable variables

• Variables cannot be updated in Lisp

Lisp: (defun my-func (i) …)  
 (my-func 3)

or the shorter 
 ((lambda (i) …) 3)

• Notice that all of the above are expressions

• In fact, functions are the only way to bind

values to names in (pure) Lisp

Lisp syntax: atoms

• An atom is the most basic unit of data in Lisp

4

112.75

“hello”

‘foo

t

nil

Number

Number

String

Quoted symbol

Boolean

Empty list

Lisp syntax: data structure

• Historically, Lisp has exactly one data structure:

the cons cell.

• The “cons cell” allows “composing” values

(cons “hello” 4)

“hello” 4

Lisp syntax: lists

• E.g., lists in Lisp are just made out of cons cells

(cons 1 (cons 2 (cons 3 nil)))  
 
 
 

• Lisp has a shorthand for this:

 ‘(1 2 3)

1 2 3

∅

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

cdr tail

cons prepend

Lisp syntax: car and cdr

• Access the first element of a cons cell with car

(car (cons 1 2)) = 1

• Access the second element with cdr

 (cdr (cons 1 2)) = 2

• What’s the value of the following expression? 
(car ‘(1 2 3))

• What about this? 
(cdr ‘(1 2 3))

Recap & Next Class

Today we covered:

Next class:

LISP

More LISP

Garbage collection

