
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: PL Fundamentals II

Announcements

• How did Lab 2 go? 
• Lab 3 posted (pset) 
• Small errors in book figures 

(thanks, Edwin!)

The York Plays (late 15th century) comprise one of the 
four complete surviving medieval play cycles 
sometimes known as ‘mystery cycles’. They are a 
series of short plays, known as ‘pageants’, which were 
performed by members of different craft guilds 
(groups of people practicing the same trade who 
formed a club) at locations throughout the city of 
York. —British Library

Why couldn’t you understand the script?

It’s written in English, after all!

• Surface appearance (“syntax”) 
• What is the set of valid symbols? 
• What combinations of symbols are 

permissible? 
• Deeper meaning (“semantics”) 

• How does a given arrangement of 
symbols correspond to meaning?

We don’t know the “ground rules” for the 
document as it is written:



Formal language

A formal language is the set of permissible sentences 
whose symbols are taken from an alphabet and 
whose word order is determined by a specific set of 
rules.

English is not a formal language.

Java is a formal language.

Intuition: a language that can be defined mathematically, 
using a grammar.

More formally

L(G) is the set of all sentences (a “language”) defined by 
the grammar, G.

G = (N, Σ, P, S) where

N is a set of nonterminal symbols.

Σ is a set of terminal symbols.

P is a set of production rules of the form 
  N ::= (Σ⋃N)* 
  where * means “zero or more” (Kleene star) and 
  where ⋃ means set union

S∈N denotes the “start symbol.”

Backus-Naur Form (BNF)

More concretely, for programming languages, we 
conventionally write G in a form called BNF.

Nonterminals, N, are in brackets: <expression>

Terminals, Σ, are “bare”:                  x

A production rule, P, consists of the ::= operator, a 
nonterminal on the left hand side, and 
a sequence of one or more symbols from N and Σ on 
the right hand side.

<variable> ::= x

We use ε to denote the empty string nonterminal.

The | symbol means “alternatively”: <num> ::= 1 | 2

Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit> 
       |  <num><digit>

as

“num is defined as a digit or as a num followed by a 
digit.”



Backus-Naur Form (BNF)

The following definition should look familiar:

<expr>  ::= <num> 
         |  <expr> + <expr> 
         |  <expr> - <expr> 
<num>   ::= <digit> 
         |  <num><digit> 
<digit> ::= 0|1|2|3|4|5|6|7|8|9

Conventionally, we ignore whitespace, but if it matters, 
use the ␣ symbol.  E.g.,

<expr>␣+␣<expr> 

<expr> is the start symbol.

Lambda calculus grammar

<expr>  ::= <var> 

         |  <abs>  
         |  <app> 

<var>   ::= x  
<abs>   ::= λ<var>.<expr> 

<app>   ::= <expr><expr>

<expr> is the start symbol.

Pro tip

Don’t try to “understand” the 
lambda calculus.

Aside from “variables,” “functions,” and 
“application,” it has no more meaning than 

regular algebra.

We ascribe meanings to it later (as we do 
with algebra).

The lambda calculus is simply a tool for 
reasoning by using the logic of computation.

Parse Trees

There are at least two forms of trees 
that we might refer to “parse trees”



Derivation Tree

1+2+3

e ::= n | e+e | e-e
n ::= d | nd
d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Describes exactly how input was parsed

Abstract Syntax Tree
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Abstracts over representation details

e ::= n | e+e | e-e
n ::= d | nd
d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1+2+3

Parse tree

We can create a “parse tree” by following the 
rules of a grammar as we interpret a 
sentence of a language.

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

Abiguity

You might have noticed that there is an 
alternative parse tree.

λx.xx
<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>



Parentheses disambiguate grammar

Axiom of equivalence for parens

<expr> = (<expr>)

Let’s modify our grammar

Lambda calculus grammar

<expr>   ::= <var> 

          |  <abs>  
          |  <app> 

          |  <parens> 

<var>    ::= x  
<abs>    ::= λ<var>.<expr> 

<app>    ::= <expr><expr> 

<parens> ::= (<expr>)

While we’re at it…

<expr>   ::= <var> 

          |  <abs>  
          |  <app> 

          |  <parens> 

<var>    ::= α ∈ { a ... z }  
<abs>    ::= λ<var>.<expr> 

<app>    ::= <expr><expr> 

<parens> ::= (<expr>)

Also…

<expr>   ::= <value> 

          |  <abs>  
          |  <app> 

          |  <parens> 

<var>    ::= α ∈ { a ... z }  
<abs>    ::= λ<var>.<expr> 

<app>    ::= <expr><expr> 

<parens> ::= (<expr>) 

<value>  ::= v ∈ ℕ 

          |  <var>



This expression is now unambiguous

(λx.x)x 

<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

<parens>

Free vs bound variables

(λx.x)x 

freebound

Evaluation: Lambda calculus is like algebra

(λx.x)x 

Evaluation consists of simplifying an 
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

α-Reduction

(λx.x)x 

This expression has two different x variables

Which should we rename?

Rule:

λx.<expr> =α λy.[y/x]<expr>

[y/x] means “substitute y for x in <expr>”



α-Reduction

(λx.x)x 

(λy.[y/x]x)x 

(λy.y)x 

β-Reduction

(λx.x)y 

How we “call” or apply a function to an 
argument

Rule:

(λx.<expr>)y =β [y/x]<expr>

Reduce this

(λx.x)x 

How far do we go?

x 

We keep going until there is nothing left to do

(λx.xy)z 

xx 

λx.y 

That “most simplified” expression is called a 
normal form.

done

done

done

not done

An expression that can be simplified is 
a called a redex.



Order (mostly) does not matter

If M → M1 and M → M2 

then M1 →* N and M2 →* N  

for some N

M

M1 M2

N “confluence”

Sometimes multiple simplifications Example

(λa.λb.(- a b)) 2 1 

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Leftmost reduction:

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Rightmost reduction:



Recap & Next Class

Today we covered:

Next class:

Lambda calculus

Lambda calculus

Computability


