Announcements

CSCl 334:
Principles of Programming Languages

Lecture 4: PL Fundamentals II

 Instructor: Dan BarowyWilliams

- How did Lab 2 go?
- Lab 3 posted (pset)
- Small errors in book figures (thanks, Edwin!)

Why couldn't you understand the script?
It's written in English, after all!
We don't know the "ground rules" for the document as it is written:

- Surface appearance ("syntax")
- What is the set of valid symbols?
- What combinations of symbols are permissible?
- Deeper meaning ("semantics")
- How does a given arrangement of symbols correspond to meaning?

Formal language

A formal language is the set of permissible sentences whose symbols are taken from an alphabet and whose word order is determined by a specific set of rules.

Intuition: a language that can be defined mathematically, using a grammar.

English is not a formal language.
Java is a formal language.

More formally

$\mathscr{L}(\mathbf{G})$ is the set of all sentences (a "language") defined by the grammar, \mathbf{G}.
$\mathbf{G}=(\mathbf{N}, \Sigma, \mathbf{P}, \mathbf{S})$ where
N is a set of nonterminal symbols.
Σ is a set of terminal symbols.
\mathbf{P} is a set of production rules of the form
N ::= ($\Sigma \cup N)^{*}$
where * means "zero or more" (Kleene star) and where u means set union
$\mathrm{S} \in \mathrm{N}$ denotes the "start symbol."

Backus-Naur Form (BNF)

More concretely, for programming languages, we conventionally write \mathbf{G} in a form called BNF.

Nonterminals, N, are in brackets: <expression>
Terminals, Σ, are "bare":
X
A production rule, \mathbf{P}, consists of the : : operator, a nonterminal on the left hand side, and
a sequence of one or more symbols from \mathbf{N} and Σ on the right hand side.
<variable> ::= x

The | symbol means "alternatively": <num> ::= 1 | 2
We use $\boldsymbol{\varepsilon}$ to denote the empty string nonterminal.

Backus-Naur Form (BNF)

You should read the following BNF expression:

$$
\begin{aligned}
\text { <num> : }:= & \text { <digit> } \\
\mid & \text { <num><digit> }
\end{aligned}
$$

aS
"num is defined as a digit or as a num followed by a digit."

Backus-Naur Form (BNF)

The following definition should look familiar:

```
<expr> ::= <num>
    | <expr> + <expr>
    | <expr> - <expr>
<num> ::= <digit>
    | <num><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9
    <expr> is the start symbol.
```

Conventionally, we ignore whitespace, but if it matters, use the „ symbol. E.g.,
<expr> ${ }_{4}+_{4}<\operatorname{expr}>$

Lambda calculus grammar

```
<expr> ::= <var>
    | <abs>
    | <app>
<var> ::= x
<abs> ::= \lambda<var>.<expr>
<app> ::= <expr><expr>
<expr> is the start symbol.
```


Parse Trees

There are at least two forms of trees that we might refer to "parse trees"

Derivation Tree

Describes exactly how input was parsed

```
e ::= n | e+e | e-e
n ::= d nd
d : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 7 | 8 | 9
```

$1+2+3$

Parse tree

We can create a "parse tree" by following the rules of a grammar as we interpret a sentence of a language.

Abstract Syntax Tree

Abstracts over representation details

```
e::= n | e+e | e-e
n ::= d | nd
```

$\mathrm{d}::=0\left|\begin{array}{ll|l|l|l|l|l|l|l} \\ \mathrm{d} & \mathbf{l} & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right|$
$1+2+3$

Abiguity

You might have noticed that there is an alternative parse tree.

Parentheses disambiguate grammar
<expr> = (<expr>)

Axiom of equivalence for parens

Let's modify our grammar

While we're at it...

```
<expr> ::= <var>
    | <abs>
    | <app>
    | <parens>
<var> ::= \alpha { { a .. z }
<abs> ::= \lambda<var>.<expr>
<app> ::= <expr><expr>
<parens> ::= (<expr>)
```

Lambda calculus grammar
<expr> ::= <var>
<expr> ::= <var>
| <abs>
| <abs>
| <app>
| <app>
| <parens>
| <parens>
<var> ::= x
<var> ::= x
<abs> ::= $\lambda<$ var>.<expr>
<abs> ::= $\lambda<$ var>.<expr>
<app> ::= <expr><expr>
<app> ::= <expr><expr>
<parens> ::= (<expr>)
<parens> ::= (<expr>)

This expression is now unambiguous

Evaluation: Lambda calculus is like algebra

$$
(\lambda x \cdot x) x
$$

Evaluation consists of simplifying an expression using text substitution.

Only two simplification rules:
α-reduction
β-reduction

Free vs bound variables

$$
\begin{gathered}
\alpha \text {-Reduction } \\
(\lambda x \cdot x) x
\end{gathered}
$$

This expression has two different x variables
Which should we rename?
Rule:

$$
\lambda x \cdot<e x p r>=_{\alpha} \lambda y \cdot[y / x]<e x p r>
$$

[y/x] means "substitute y for x in <expr>"
$\left.\begin{array}{c|}\alpha \text {-Reduction } \\ (\lambda x \cdot x) x \\ (\lambda y \cdot[y / x] x) x \\ (\lambda y \cdot y) x\end{array}\right]$

β-Reduction
$(\lambda x . x) y$
How we "call" or apply a function to an
argument
Rule:
$(\lambda x .<e \operatorname{expr}>) y={ }_{\beta}[y / x]<e x p r>$

Reduce this

($\lambda x . x$) x

Example

 (入a.入b.(- a b)) 21
Activity

Rightmost reduction:

$$
(\lambda f . \lambda x . f(f x))(\lambda z \cdot(+x z)) 2
$$

Recap \& Next Class

Today we covered:
Lambda calculus

Next class:
Lambda calculus
Computability

