
Homework 9
Due Sunday, May 17 by 11:59pm

Project Turn-In Instructions
Since you will be committing your work to an existing repository, please commit your work to a new branch
called mostly-working.

Turn in your work using the Github repository assigned to you. The name of the Github repos-
itory will have the form cs334_project_<your user name>. For example, my repository would be
cs334_project_dbarowy. Since this repository already exists from a previous assignment, please commit
your work to a branch called mostly-working.

A good way to check that you submitted your assignment correctly is to git clone your repository to a
new folder and then try building/running everything.

Pair Programming and Honor Code: You may optionally collaborate with one other person on the
submission for this assignment. If you work with a partner, choose one of the two partner repositories for
your submission. In the other repository, be sure to leave a collaborators.txt file that states who you
worked with and the name of the repository where the code may be found. If you would like me to pair you
with a partner, please let me know. You may not share code with any student who is not your designated
partner.

This assignment is due on Sunday, May 17 by 11:59pm.

Guidelines

Q1. (10 points) . Language Name
If your language does not have a name, now is the time to give it one. Silly, nerdy, and/or humorous
names are especially appreciated.

Q2. (10 points) . Git Branch
Please commit your work to a new branch called mostly-working in your repository.

Q3. (10 points) . Organization
Be sure to organize your implementation across at least three files, as in the previous assignment:

• Your parser should reside in a file called ProjectParser.fs.
• Your interpreter / evaluator should reside in a file called ProjectInterpreter.fs.
• Your main function, as well as any necessary driver code, should reside in a file called Program.fs.
• You may create additional library files as necessary.

All of these files should be stored somewhere in a directory called lang. The precise arrangement of files
inside the lang folder does not matter; for example, you may decide to organize your implementation
as a .NET solution instead of a simple .NET console project so that you can use MsTest.

Your project implementation should adhere to the following running convention. You should be able
to cd into the lang directory and then run your language implementation by typing the command
“dotnet run <args>”. Depending on the design of your implementation, <args> should either be
a string representing a program or a path to a file containing a program. Running “dotnet run”
command without arguments should make it clear how to call your program with arguments.

Q4. (40 points) . Complete project specification
You should commit your updated project specification as a LATEX source file and pre-built PDF. Please
call the LATEX file lang-spec.tex and call the PDF lang-spec.pdf.

If you have not done so already, please merge your project proposal with your project specification
document from the previous assignment. The project specification should be a complete document that
explains the purpose, motivation, and technical implementation details of your language. A sufficiently-
motivated user should have all the information they need in order to write programs in your language
using your documentation.
Most of the sections are the same as before; sections that require new text are marked with a bold
NEW. Please be sure to have the following sections:

(a) Introduction
What problem does your language solve? Why does this problem need its own programming
language?

(b) Design Principles
Languages can solve problems in many ways. What are the guiding aesthetic or technical principles
that underpin its design?

(c) Examples
NEW. Provide three working example programs in your language. If any of the examples from
your proposal do not yet work, please either extend the language to support them or replace
them with working examples. Explain exactly how to run each example (e.g., dotnet run
example-1.lang) and what the expected output should be (e.g., 2).

(d) Language Concepts
What are the core concepts a user needs to understand in order to write programs? Think in
terms of both “primitives” and “combining forms.” What are the key ideas and how are they
combined?

(e) Formal Syntax
NEW. Provide a formal syntax for all supported operations, written in Backus-Naur form. This
documentation should provide all of the rules necessary for a user to generate a valid program.

(f) Semantics
NEW. Update the semantics section from the previous assignment to explain all of your currently-
supported data types and operations. This section should explain how a user understands the
effect of a syntactic construct given in the formal syntax section. This need not be so detailed
that it explains what the code does; instead it should explain what the syntax means. In other
words, focus on what each language element achieves instead of explaining how it does it. Please
refer to the example shown in the previous assignment for guidance. Your semantics section need
not be in the tabular form shown if a table is inconvenient.

(g) Remaining Work
NEW. Add a section at the end of your specification that explains which features are not yet
implemented but which you plan to implement by the final project deadline. This should include
any essential remaining data types and operations described in your proposal that you have not
yet implemented.

If you are already nearly done, this would be a good place to describe an optional “stretch goal.”
For example, if you plan to build a graphical user interface for your language—which is most
definitely optional—describe that interface here. Another possibility is a program correctness
checker. For example, your syntax may generously admit programs that make little sense syntac-
tically; adding a program checking phase before evaluation is another good “stretch goal.” A third
possibility may be to describe a plan to enhance the readability of your language specification.

Q5. (10 points) . Example programs
Provide the example programs discussed in your proposal as separate files and put them in an examples
directory at the top level of your repository so that it is easy to find and use them. Please call them
example-1.<whatever>, example-2.<whatever>, and example-2.<whatever>. For example, I might
call my example programs example-1.lang, example-2.lang, and example-3.lang.

Q6. (10 points) . Execution
Each of your examples should run and produce the outputs described in your project proposal. In
addition, if a user makes reasonable attempts to use your language by referring to the language docu-
mentation, those examples should work or mostly work.

Q7. (0 points) . Tests
This submission does not require tests, however your final project will require unit tests that demon-
strate that the example programs behave as expected. If you want to get a head start, you can work
on them now.

Unit tests are especially useful for testing parsers and evaluators, which are likely to be pure functions
in your language implementation. For example, each subcomponent of a parser is itself a parser, and
since parser combinators are pure functions, they can be called independently of each other. To do so,
you will first need to prepare your input string, then pass it to one of your parser functions, then it will
need to check for Success or Failure. Having parser tests makes the development of a language parser
much easier because you can see whether the addition of new language syntax has caused problems
recognizing inputs that you have been able to successfully parse before.

