
Homework 8
Due Sunday, May 10 by 11:59pm

Turn-In Instructions
For the specification portion of this assignment, provide a LATEX source file and pre-built PDF. For full
credit, your LATEX file should build properly. Be sure to git add all necessary files (e.g., images) if your
LATEX depends on it. Your specification should be stored in the spec folder.

Turn in your work using the Github repository assigned to you. The name of the Github reposi-
tory will have the form cs334hw_project_<your user name>. For example, my repository would be
cs334hw_project_dbarowy. You should have received an invite to commit in the repository in your email.
If you did not receive this email, please contact me right away!

A good way to check that you submitted your assignment correctly is to git clone your repository to a
new folder and then try building/running everything.

Pair Programming and Honor Code: You may optionally collaborate with one other person on the
submission for this assignment. If you work with a partner, choose one of the two partner repositories for
your submission. In the other repository, be sure to leave a collaborators.txt file that states who you
worked with and the name of the repository where the code may be found. If you would like me to pair you
with a partner, please let me know. You may not share code with any student who is not your designated
partner.

Upon Completion: Please update the README.md file to let me know that you are finished.

This assignment is due on Sunday, May 10 by 11:59pm.

Problems

Q1. (70 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal Project Prototype
For this assignment, you will build a minimally working version of your language. Along the way, you
should also update your project specification.
A minimally working interpreter has the following components:

(a) A parser. Put your parser in a library file called ProjectParser.fs. The namespace for the
parser should also be called ProjectParser.

(b) An interpreter / evaluator. Put your interpreter in a library file called ProjectInterpreter.fs.
The namespace for the interpreter should also be called ProjectInterpreter.

(c) A driver program. The driver should contain a main method that takes input from the user,
parses and interprets it using the appropriate library calls, and displays the result. Put your main
method in a file called Program.fs. For example, if your project is an infix scientific calculator
(an expression-oriented language), it might accept input and return a result on the command line
as follows:

$ dotnet run "1 + 2"
3

Alternatively, your language might read in a text file that contains the same program as above,
e.g.,

$ dotnet run myfile.calc
3

Either way, running your language without any input should produce a helpful “usage” message
that explains how to use your programming language.



$ dotnet run
Usage:

dotnet run <file.calc>

Calculang will frobulate your foobars.

You should think carefully about what constitutes a “primitive value” in your language. Primitive
values and operations on primitive values are good candidates for inclusion in a minimally working
interpreter because they are generally the easiest forms of data and operations to implement.
Another form of primitive operation, often used in statement-oriented languages like C, is referred to
as the “sequence operator”, and it’s what is meant by the semicolon in the the following C program
fragment:

1;
2;

which produces the following AST:

seq

1 seq

2 ε

where ε is shorthand for “no operation.” In any case, choose one operation that makes sense in your
langauge.

Minimally Working Interpreter

The following constitutes a “minimally working interpreter”:

(a) Your AST can represent at least one kind of data.
(b) Your AST can represent at least one operation.
(c) Your parser can recognize a program consisting of your one kind of data and your one operation

and it produces the appropriate AST.
(d) Your evaluator can evaluate your one operation using operands consisting of your data, and if

necessary, expressions consisting of your data and operation. In other words, it can recursively
evaluate subexpressions, where appropriate. Note that it is important that your minimally work-
ing interpreter do something, whether that be to compute a value, or write to a file, etc.

Minimal Formal Grammar

Additionally, you should update your specification with a formal definition of the minimal grammar.
For example, if our minimal working version is a scientific calculator that only supports addition, our
first pass on the grammar might be:

<expr> ::= <number><ws><op><ws><expr>
| <number>

<number> ::= <d><number>
| <d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<op> ::= +
<ws> ::= ␣ | ε



Where ␣ denotes a space character and ε denotes the empty string. Note that we did not write the
following similar grammar.

<expr> ::= <expr><ws><op><ws><expr>
| <number>

<number> ::= <d><number>
| <d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<op> ::= +
<ws> ::= ␣ | ε

The reason is that this latter grammar is what we call left recursive. In particular, the production
<expr><ws><op><ws><expr> is problematic for mechanical reasons: when we convert our BNF into
a program (a parser), it is possible to construct a program that recursively expands the left <expr>
infinitely without ever consuming any input. When using recursive descent parsers such a parser
combinators, we must be careful to ensure that recursive parsers always consume some input on each
step, otherwise, we run the very real danger of our parser getting stuck in an infinite loop. If your
grammar is left recursive, you should redesign it so that it is no longer left-recursive.

Since your grammar only has a single operation, precedence will not yet be an issue. However, if
you can include more than one such operation, you will need to think about the associativity of your
operator. Is it left or right associative? For example, addition is typically left associative, therefore
the following expression

1 + 2 + 3

should produce the following AST

+

+

1 2

3

Be sure to explain your operator’s associativity in the next section.

Minimal Semantics

Finally, you should explain the semantics of your data and operators. For example, you might build
the following table.

Syntax Abstract Syntax Type Prec./Assoc. Meaning
n Number of int int n/a n is a primitive. We repre-

sent integers using the 32-
bit F# integer data type
(Int32).

e1 + e1 PlusOp of Expr * Expr int -> int -> int 1/left PlusOp evaluates e1 and e2,
adding their results, finally
yielding an integer. Both
e1 and e1 must evaluate
to int, otherwise the inter-
preter aborts the computa-
tion and alerts the user of
the error.


