
Homework 4
Due Sunday, March 8 by 11:59pm

Handout 8
CSCI 334: Spring 2020

This homework is a pair programming assignment. This means that you are required to work with a partner
for this lab.

You may choose a lab partner or you may ask to have one assigned. Please inform me of your choice by
email by 11:59pm on Monday, March 2.

Turn-In Instructions
Your work for this lab should be turned in using your assigned GitHub repository.

If you discuss this assignment with anyone but your assigned partner (e.g, a study group), please be sure
to include their names in a collaborators.txt file in your repository. Note that this assignment should
otherwise be anonymized: neither your name nor your partner’s name should appear in any of the files
submitted with this assignment except the file collaborators.txt.

Programming solutions should be typed up and submitted using your partner repository. For example, if
your GitHub username is dbarowy and you are working with a partner whose username is wjannen, look
for a repository called cs334hw4-dbarowy-wjannen (usernames will be in alphabetical order). Be sure that
your work is committed and pushed to your repository by the due date.

Lisp files should have a “.lisp” suffix. For example, the pair programming problem Q1b should appear as
the file q1b.lisp. Your code should be documented using comments. Comment lines start with a “;”.

Honor code: You may collaborate with your partner on all aspects of this assignment, including discussing
the problems, work on paper, and writing code. You may also work with students in the class other than
your partner, but you may only discuss the problems at a high level (e.g., what the problems mean or general
approaches to problems that do not involve code).

This assignment is due on Sunday, March 8 by 11:59pm.

Reading

1. (Required) “Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part
I,” from the course packet.

2. (Required) LISP Notes.

Problems

Q1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cons Cell Representations
(a) (2 points) Draw the list structure created by evaluating (cons 'A (cons 'B 'C)). Include this

diagram as an image in your repository.

(b) (4 points) Write a Pure Lisp expression that will result in the repre-
sentation to the right, with no sharing of the (B . C) cell.
In the comments, explain why your expression produces
this structure.

A B C

CB

https://williams-cs.github.io/cs334-s20-www/assets/readings/lisp.html


(c) (4 points) Write a Pure Lisp expression that will result in the repre-
sentation to the right, with sharing of the (B . C) cell. In
the comments, explain why your expression produces this
structure.

A B C

While writing your expressions, use only these Lisp constructs: lambda abstraction, function applica-
tion, the atoms 'A 'B 'C, and the basic list functions (cons, car, cdr, atom, eq).

Q2. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recursive List Manipulation
Write a function merge-list that takes two lists and joins them together into one large list by alter-
nating elements from the original lists. If one list is longer, the extra part is appended onto the end of
the merged list. The following examples demonstrate how to merge the lists together:

* (merge-list '(1 2 3) nil)
(1 2 3)

* (merge-list nil '(1 2 3))
(1 2 3)

* (merge-list '(1 2 3) '(A B C))
(1 A 2 B 3 C)

* (merge-list '(1 2) '(A B C D))
(1 A 2 B C D)

* (merge-list '((1 2) (3 4)) '(A B))
((1 2) A (3 4) B)

Before writing the function, you should start by identifying the base cases (there are more than one)
and the recursive case.

Q3. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse
Write a function rev that takes one argument. If the argument is an atom it remains unchanged.
Otherwise, the function returns the elements of the list in reverse order:

* (rev nil)
nil

* (rev 'A)
A

* (rev '(A (B C) D))
(D (B C) A)

* (rev '((A B) (C D)))
((C D) (A B))

Q4. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mapping Functions
Write a function censor-word that takes a word as an argument and returns either the word or XXXX
if the word is a “bad” word:

* (censor-word 'lisp)
lisp

* (censor-word 'midterm)
XXXX



The lisp expression (member word '(extension algorithms graphics AI midterm)) evaluates to
true if word is in the given list.
Use this function to write a censor function that replaces all the bad words in a sentence:

* (censor '(I NEED AN EXTENSION BECAUSE I HAD AN AI MIDTERM))
(I NEED AN XXXX BECAUSE I HAD A XXXX XXXX)

* (censor '(I LIKE PROGRAMMING LANGUAGES MORE THAN GRAPHICS OR ALGORITHMS))
(I LIKE PROGRAMMING LANGUAGES MORE THAN XXXX OR XXXX)

Operations like this that must processes every element in a structure are typically written using map-
ping functions in a functional language like Lisp. In some ways, mapping functions are the functional
programming equivalent of a “for loop”, and they are now found in main-stream languages like Python,
Ruby, and even Java. Use a map function in your definition of censor.

Q5. (20 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Working with Structured Data
This part works with the following database of students and grades:

;; Define a variable holding the data:
* (defvar grades '((Riley (90.0 33.3))

(Jessie (100.0 85.0 97.0))
(Quinn (70.0 100.0))))

First, write a function lookup that returns the grades for a specific student:

* (lookup 'Riley grades)

(90.0 33.3)

It should return nil if no one matches.
Now, write a function averages that returns the list of student average scores:

* (averages grades)

((RILEY 61.65) (JESSIE 94.0) (QUINN 85.0))

You may wish to write a helper function to process one student record (ie, write a function such that
(student-avg '(Riley (90.0 33.3))) returns (RILEY 61.65), and possibly another helper to sum
up a list of numbers). As with censor in the previous part, the function averages function is most
elegently expressing via a mapping operation (rather than recursion).
We will now sort the averages using one additional Lisp primitive: sort. Before doing that, we need
a way to compare student averages. Write a method compare-students that takes two “student/av-
erage” lists and returns true if the first has a lower average and nil otherwise:

* (compare-students '(RILEY 61.65) '(JESSIE 94.0))
t

* (compare-students '(JESSIE 94.0) '(RILEY 61.65))
nil

To tie it all together, you should now be able to write:

(sort (averages grades) #'compare-students)

to obtain

((RILEY 61.65) (QUINN 85.0) (JESSIE 94.0))



Q6. (20 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deep Reverse
Write a function deep-rev that performs a “deep” reverse. Unlike rev, deep-rev not only reverses
the elements in a list, but also deep-reverses every list inside that list.

* (deep-rev 'A)
A

* (deep-rev nil)
NIL

* (deep-rev '(A (B C) D))
(D (C B) A)

* (deep-rev '(1 2 ((3 4) 5)))
((5 (4 3)) 2 1)

I have defined deep-rev on atoms as I did with rev.

Q7. (20 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recursive Definitions
Not all recursive programs take the same amount of time to run. Consider, for instance, the following
function that raises a number to a power:

(defun power (base exp)
(cond ((eq exp 1) base)

(t (* base (power base (- exp 1))))))

A call to (power base e) takes e − 1 multiplication operations for any e ≥ 1. You could prove this
time bound by induction on e:

Theorem: A call to (power b e), where e ≥ 1, takes at most e− 1 multiplications.

• Base case: e = 1. (power b 1) returns b and performs zero multiplications because b1 = b.
• Inductive hypothesis: For all k < e, (power b k) takes at most k − 1 multiplications.
• Proof for e > 1: Since e is greater than 1, the “else” branch of cond is taken, which

(a) performs one multiply operation, and
(b) then recursively calls (power b (- e 1)).
By induction, we know that the recursive call performs at most (e−1)−1 = e−2 multiplications.
Because the result is multiplied by the base, there up to e−2+1 = e−1 multiplications. Therefore,
power performs at most e− 1 multiplications.

Multiplication operations are typically very slow relative to other math operations on a computer.
Fortunately, there are other means of exponentiation that use fewer multiplications and lead to more
efficient algorithms. Consider the following definition of exponentiation:

b1 = b
be = (b(e/2))2 if e is even
be = b ∗ (be−1) if e is odd

(a) Write a Lisp function fastexp to calculate be for any e ≥ 1 according to these rules. You will
find it easiest to first write a helper function to square an integer, and you may wish to use the
library function (mod x y), which returns the integer remainder of x when divided by y.



(b) Show that the program you implemented is indeed faster than the original by determining a bound
on the number of multiplication operations required to compute (fastexp base e). Prove that
bound is correct by induction (as in the example proof above), and then compare it to the bound
of e−1 from the first algorithm. Include this proof as a comment in your code. Multline comments
are delineated with #| and |#, as in: #| . . . |#
Hint: for fastexp, it may be easiest to think about the number of multiplications required when
exponent e is 2k for some k. Determine the number of multiplies needed for exponents of this
form and then use that to reason about an upper bound for the others.
The following property of the log function may be useful in your proof:

logb(m) + logb(n) = logb(mn)

For example, 1 + log2(n) = log2(2) + log2(n) = log2(2n).

Q8. (5 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bonus Problem
(a) Using Pure Lisp, implement a binary search tree, where each tree node is a list that stores a

number, a left subtree, and a right subtree. The empty subtree should be represented as nil.
Implement the following functions:

i. insert: Given a tree t, inserts a number, returning a new tree.
ii. lookup: Given a tree t and a number n, returns T if n is in the tree, otherwise nil.

(b) How many cons cells are created during insert?
(c) If you were to use features from Impure Lisp instead and a slightly different definition of insert,

do you think that you could reduce the number of cons cells created during insertion? Why or
why not?

Q9. (0 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optional Feedback
How was this assignment on a scale of λf.λx.x to λf.λx.f (f (f (f x)))?
Do you have any additional comments or feedback that you would like me to know?
Please supply your answer as a feedback.txt file.


