
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 21: Object-oriented programming

Topics

Programming in the large/small
Object-oriented programming

Dynamic dispatch

Your to-dos

1. Lab #10, due Sunday 12/3
2. Want to talk about your project?  

Office hours tomorrow 10-11am, 1:30-2:30pm.

Final project timeline

1. Project proposal (Lab 8), due Sun 11/12
2. Minimally working version (Lab 9), due Sun 11/19
3. Language specification doc (Lab 10), due Sun 12/3
4. Mostly working version (Lab 11), due Sun 12/10
5. Project + video presentation (Lab 12), due Sun 12/17

Programming in the small

Programming in the large

What languages?

Java C++

Ruby C++, Python

Java

Object-Oriented Programming

Object-Oriented Programming

• OOP is both a language design and a way of
programming (OO design).

• OOP is possibly the most impactful development in

the history of programming languages.

What OOP is Not
• Many, many instructors introduce OOP as a way of

naturally simulating the world.

• This view entirely misses the point of OOP!

What OOP is
• Object-oriented programming is actually about scalability.
• The original motivation was motivated by two questions:

• How do we manage big codebases?
• How do big teams of programers collaborate effectively?

small programs big programs

small teams

big teams

class projects
personal project

Google

Fortnite

Ruby on Rails

ML apps

Minecraft

History
• First language recognizable as OO:

Simula-67.

• Developed by Kristen Nygaard and others at

the Norwegian Computing Center.

• Grew out of frustrations using ALGOL.

• Original plan was to add an “object” library,

inspired by C.A.R. Hoare’s “record classes”.

• It was eventually realized that a

fundamentally different way of structuring a

program was possible; Simula became its

own language.

History

• But Simula-67 was not the most influential

OO language.

• That language was…

Smalltalk

Alan Kay
Essentially invented
the laptop/tablet
(“Dynabook”)

Turing Award

Dan Ingalls
Essentially invented
object oriented
programming

Grace Murray
Hopper Award

Adele Goldberg
Essentially invented
graphical user
interfaces

ACM Software
Systems Award

• First mainstream OO success: Smalltalk

• Developed by Alan Kay, Dan Ingalls, and Adele Goldberg at Xerox

PARC and later Apple Computer.

• Used to implement major components of the groundbreaking

Xerox Alto computer: OS, compiler, GUI, applications.

• Highly influential. E.g., C++, Java, Ruby, etc.

Smalltalk
And they showed me really three things. But I was so

blinded by the first one I didn't even really see the other two.

One of the things they showed me was

object orienting programming. They

showed me that but I didn't even see

that. The other one they showed me

was a networked computer system…

they had over a hundred Alto computers

all networked using email etc., etc. I

didn't even see that. I was so blinded by

the first thing they showed me which

was the graphical user interface… within you

know ten minutes it was obvious to me that all computers

would work like this some day.

Smalltalk

Smalltalk OK, really, what is OO?

Object-oriented programming is composed primarily of

four key language features:

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance

Purpose: polymorphism at scale

Purpose: polymorphism at scale

OK, really, what is OO?

Object-oriented programming is composed primarily of

four key language features:

1. Abstraction

2. Dynamic dispatch
3. Subtyping

4. Inheritance
In my mind, this is

OO’s killer feature.

“Object-oriented programming is a
solution to complexity”

Dynamic Dispatch

(the secret to understanding how
Java, Python, Ruby, etc. work)

Dynamic Dispatch

x.method(arg1,…)

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object selector

message{

Dynamic Dispatch
• Suppose we have:

class Number {

 int value;

 public Number(int v) {

 value = v;

 }

 public int getValue() {

 return value;

 }

 public String squee() {

 return “squee!”;

 }

}

Dynamic Dispatch

main
x =

Call stack

???

•x is a Number.

• How does an object work?

Dynamic Dispatch
• Dynamic dispatch is an algorithm for finding the

implementation of a given selector (i.e., method).

@value

Number object Number class Template

@value

…

Method dictionary
getValue

squee

return value;

return “squee!”;

x =

Call stack

@value

1 Call x.getValue

2

2 x.getValue message dispatched to x

3 x.getValue message forwarded to Number

4 x.getValue message lookup in method dictionary

3

5 x.getValue executed.

Number object Number class Template

@value

…

Method dictionary
getValue

squee

4

x =

Call stack

return value;

return “squee!”;

5

Object-oriented programming is a
solution to complexity

Inheritance

• One small change enables inheritance.

@value

RationalNumber object RationalNumber class Template

@value

…

Superclass

Method dictionary
getValue

squee

x =

Call stack

return value;

return “squee!”;

1 Call x.squee

2 squee message dispatched to x

3 squee message forwarded to RationalNumber

4 squee message lookup in method dictionary

5 algorithm recurses on superclass
5Superclass

@value

Template

@value

…

2
3

RationalNumber object RationalNumber class

Method dictionary
getValue

4

no squee method

x =

Call stack

return value;

Object-oriented programming is a
solution to complexity

Recap & Next Class

This lecture:

Next lecture:
Student Course Surveys

How to give a good technical talk

OOP

