
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 20: Scope

Outline

What is scope?
What are the kinds?
Why is it important?
How does it work?

Your to-dos

1. Lab #10, due Sunday 12/3
2. Want to talk about your project?  

Office hours today 4-5pm.

Final project timeline

1. Project proposal (Lab 8), due Sun 11/12
2. Minimally working version (Lab 9), due Sun 11/19
3. Language specification doc (Lab 10), due Sun 12/3
4. Mostly working version (Lab 11), due Sun 12/10
5. Project + video presentation (Lab 12), due Sun 12/17

Scope

Recall that a variable is a named placeholder for a value in
an expression. Scope is a set of rules that determines what
value is returned when a variable is used in an expression.

If your language does not have functions (or blocks, like
for loops), scope rules are mostly irrelevant.

Kinds

There are two common kinds of scope.

• Lexical scope
• Dynamic scope

Both definitions depend on a notion of time.

• Lexical scope depends on compile time.
• Dynamic scope depends on run time.

There are many more uncommon kinds of scope, but if you
work to understand the two above, you will find it easier to
deal with the weirdos.

Importance

Scope rules are used to determine:

• Which values are returned.
• When garbage collection is run.

Scope rules can have an impact on whether programmers
write buggy programs. Here are some languages with
surprising scope rules:

• JavaScript
• R
• LISP (the original)
• Bash
• Mathematica

Dynamic scope

Dynamic scope is a rule that finds the most recent value
of a given variable in a program’s execution (i.e, at run
time).

Lexical scope

Lexical scope is a rule that uses the lexically closest
value of a variable at the time the use was defined (i.e., at
compile time).

Master scope, master programming

https://stackoverflow.com/a/500459/480764

Want to be a front-end developer? You should probably
know these rules:

Perl Examples
local $x = 10;

sub f
{
 print $x."\n";
}

sub g
{
 local $x = 20;

 f();
}

g();

What is printed?

my $x = 10;

sub f
{
 print $x."\n";
}

sub g
{
 my $x = 20;

 f();
}

g();

Which one is dynamic and which one is lexical?

Perl Examples
local $x = 10;

sub f
{
 print $x."\n";
}

sub g
{
 local $x = 20;

 f();
}

g();

Lexical scopeDynamic scope

my $x = 10;

sub f
{
 print $x."\n";
}

sub g
{
 my $x = 20;

 f();
}

g();

(local keyword) (my keyword)

How do they work?

(whiteboard)

How does a function work?

def plus(x,y):
 x = x + 1
 return x + y

x = 1
y = 2

print(plus(y,x))
print(x)
print(y)

What is the output of this program?

Why?

Recap & Next Class

This lecture:

Next lecture:
Object-Oriented Programming

Scope

