Announcements

CSCIl 334: *Field trip to WCMA, Thursday, Nov 2.

*Colloguium: Pre-registration Info Session,

Principles of Programming Languages 2:35pm in Wege Auditorium.

Lecture 12: Type inference

WiLLiamMs COLLEGE
ULLETIN

TIm
COURSE CATALOG ~ SEPTEMBER 2009

Instructor: Dan Barowy

Williams

Announcements Your to-dos

*TA Applications due Friday, Oct 27.
*TA Evaluation forms due Friday, Oct 27.

1. Read for How to Fix a Motorcycle.
2. Lab 6, due Sunday, October 29 by 10pm.
3. Project checkpoint #1, due Sunday, Nov 5.

Topics

Type checking
Type inference

Cool things made possible by
the lambda calculus!

type inference

Not everybody loves this part of PL.

| hope that you can appreciate the absence of magic.

Type checking

(or, “how does my compiler know
that my expression is wrong?”)

let f(x:int) : int = “hello” + x

let f(x:int) : int = "hello" + x;;

stdin(l,32): error FS0001l: The type 'int' does not
match the type 'string'

A refresher on “curried” expressions

let f(a: int, b: int, c: char) : float = ..
£ is a:int * b:int * c:char -> float
let f(a: int) (b: int) (c¢: char) : float = ..
£ is int -> int -> char -> float
let £fabc=.

f = Aa.Ab.Ac...

Type checking

step 1: convert into lambda form

let f(x:int) : int = “hello” + x
f = Ax.%“hello ” + x convert into A expression

f = Ax. (+ “hello ” x) assume + = Ax.Ay.(x +y)

The purpose of this step is to make all of the parts of
an expression clear

Type checking

step 2: generate parse tree
f = Ax. ((+ “hello ") x)

f hasform Ax. ((EE)E)

Type checking

step 3: label parse tree with types

read “:” as “has type”

L rint]
¥

X :int
:int - int

+ “hello ” :string
:int - int - int

Type checking

step 4: check that types are used consistently
1. Start at the leaves

. . int - int - int @ string
2. Do type mismatches arise?
YES, TYPE ERROR

Yes = error —
No = ok @ cint ":-ui?t
3. iferror,stop 7\l
. W, Xiint sint |
and report first

mismatch @>/ X int
:int - int

SN .

+ “hello

:int - int - int

:string

Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f£(x) = “hello ” + x

?

Hinley-Milner algorithm

Hindley and Milner
invented algorithm
independently.

Infers types from known
data types and
operations used.

Depends on a step called
“unification”.

| will demonstrate
informal method for
J. Roger Hindley unification; works for Robin Milner
small examples

Hinley-Milner algorithm

Has three main phases:

1. Assign known types to each subexpression

2. Generate type constraints based on rules of A calculus:
a. Abstraction constraints
b. Application constraints

3. Solve type constraints using unification.

Type inference

step 1: convert to lambda AST

let f(x) =5 + x

Type inference

step 2: label parse tree with known/unknown types

let f(x) = 5 + x

Type inference

it is often helpful to have types in tabular form

subexpression type
+ int - int - int
5 int
(+5) r
X S
(+5)x T
Ax. ((+ 5) x) u

Type inference
step 3: generate constraints

<expr> ::= <var> variable
| A<var>.<expr> abstraction

| <expr><expr> function application

Three rules, each corresponding to a kind
of A expression.

3.1. <var> constraint

No constraint.

3.2. abstraction constraint

A<var>.<expr>
“left triangle rule”
® JSo%
7N SN

<var> <expr> B 1B

Constraint: If the type of <var> is o and the type of <expr> is g,
and the type of A is v, then the constraintis v = o — .

3.3. application constraint

<expr><expr>

“right triangle rule”

»

PON PONS

<exprl> <expr2> o B

.............................. -

Constraint: If the type of <expr1>is o and the type of <expr2>is
3, and the type of @ is v, then the constraintis o = 3 - v.

constraints summary

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of A is c, then the constraintisc = a - b.

.
K .
B :
5
B
d /// \\
5
e
B
B
B
5
Sennnnnnnnnnnnnnnnnnn sl »

Application: If the type of <expr1> is a and the type of <expr2>is
b, and the type of @ is c, then the constraintisa = b - c.

Type inference

subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r int - int - int = int - r
X s n/a
(+5) x t r=s-+t
AX. ((+ 5) x) u u=s->=t

Type inference

Type inference

step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r int - int - int = int - r (+5) r = int - int int - int - int = int - r
X s n/a X s n/a
(+5) % t r=so-t (+5) x t r=s -t
Ax. ((+ 5) x) u u=sot Ax. ((+ 5) x) u u=s 5t
Start with the topmost unknown. What do we know about r? Eliminate r from the constraint.
int - int - int = int - r
r = int - int
Type inference Type inference
step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r = int - int int-int-int = int-int-int (+5) r = int - int int-int-int = int-int-int
x s n/a X s n/a
(+5) x t int - int = s - t (+5) x t int - int = s - t
Ax. ((+ 5) x) u u=s o>t AxX. ((+ 5) x) u u=3s -t

Eliminate r from the constraint.

What do we know about s and t?
int - int = s - t
s = int
t = int

Type inference

Type inference

step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r = int - int int-int-int = int-int-int (+5) r = int - int int-int-int = int-int-int
X s = int n/a X s = int n/a
(+5) x t = int int - int = s - t (+5) x t = int int - int = int - int
AX. ((+ 5) x) u Eﬂiﬁw:’ﬁ AxX. ((+ 5) x) u u = int - int
Eliminate s and t from constraint. What do we know about u?
u = int - int
Type inference Type inference
step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r = int - int int-int-int = int-int-int (+5) r = int - int int-int-int = int-int-int
x s = int n/a X s = int n/a
(+5) x t = int int - int = int - int (+5) x t = int int - int = int - int
Ax. ((+ 5) x) u = int - int u = int - int AX. ((+ 5) x) u = int - int int - int = int - int

Eliminate u from constraint.

Done when there is nothing left to do.
Sometimes unknown types remain.

An unknown type means that the function is polymorphic.

Completed type inference

let £ x =5+ x
f = Ax.((+ 5) x)

@ :int - 1nt

", X :int H
N @ :int;E
./.\ ¥
X :int
:int - int
N\

/

+ 5:int

:int - int - int

Let’s try one together

1. convert to A expression

let apply £ x = £ x
apply = Af.Ax.f x

2. label with type variables

let apply £ x = £ x
apply = Af.Ax.f x

3. generate constraints

subexpression type constraint
i a n/a
X b n/a
f x c a=>b - c
Ax.f x d d=Db - c
Af.Aax.f x e e a - d

4. unify

subexpression type constraint
£ a n/a
X b n/a
f x c a b - ¢
Ax.f x d d=Db - c
Af.Ax.f x e e a - d

subexpression type constraint
f b - ¢ n/a
X b n/a
f x c
Ax.f x d d b - c
Af.Ax. £ x e e b c - d

subexpression type constraint
f b - c n/a
X b n/a
f x c
Ax.f x b - c
Af.Ax.f x e e =b - c b - ¢

5. rename variables in alpha order

subexpression type constraint
i b - ¢ n/a
X b n/a
f x c
Ax.f x b - ¢
Af.Aax.f x b-c-Db-c

subexpression type constraint
£ ‘a - ¢ n/a
X ‘a n/a
f x (¢}
Ax.f x ‘a - C
Af.Ax.f x ‘a - ¢c - ‘a - cC

5. rename variables in alpha order

5. rename variables in alpha order

subexpression type constraint
f ‘a - ‘b n/a
X ‘a n/a
fox ‘b
Ax.f x ‘a - ‘b
Af.Ax. £ x ‘a ‘b ‘a b
h'

subexpression type constraint
f ‘a - ‘b n/a
X ‘a n/a
f x ‘b
Ax.f x ‘a - ‘b
Af.Ax.f x ‘a ‘b a ‘b
h'

Is this the right answer?

> let apply

val apply :

Lookin’ good!

Try this one at home

Recap & Next Class

Today:

Type inference

Next class:

Parsing

