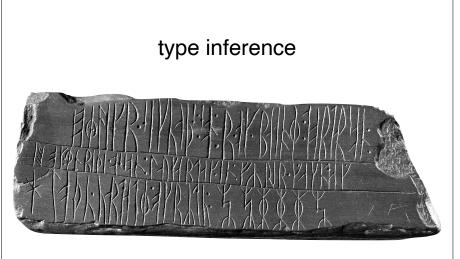


Topics

Type checking

Type inference

Cool things made possible by the lambda calculus!



Not everybody loves this part of PL.

I hope that you can appreciate the absence of magic.

Type checking (or, "how does my compiler know that my expression is wrong?")

let f(x:int) : int = "hello" + x

let f(x:int) : int = "hello" + x;;

stdin(1,32): error FS0001: The type 'int' does not
match the type 'string'

A refresher on "curried" expressions

let f(a: int, b: int, c: char) : float = ...

f is a:int * b:int * c:char -> float

let f(a: int)(b: int)(c: char) : float = ...

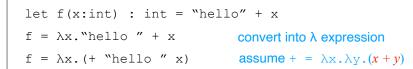
f is int -> int -> char -> float

let f a b c = ...

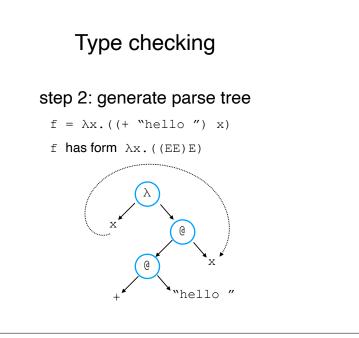
 $f = \lambda a . \lambda b . \lambda c ...$

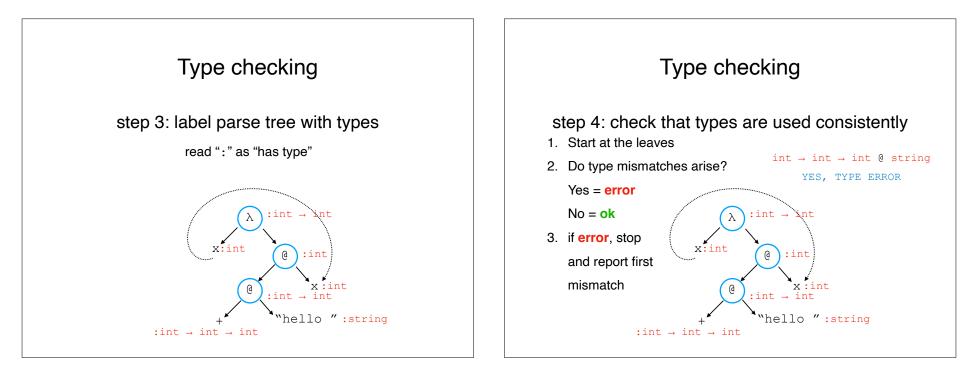
Type checking

step 1: convert into lambda form



The purpose of this step is to make all of the parts of an expression clear





notice that we had a typed expression

```
let f(x:int) : int = "hello " + x
```

what if, instead, we had

let f(x) = "hello " + x

?

Hinley-Milner algorithm

J. Roger Hindley

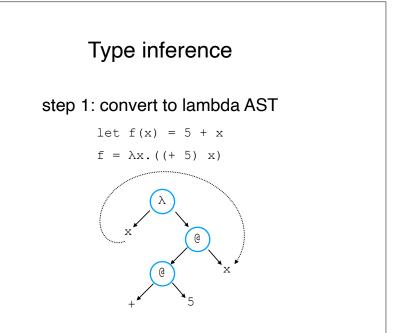
- Hindley and Milner invented algorithm independently.
- Infers types from known data types and operations used.
- Depends on a step called "unification".
- I will demonstrate informal method for unification; works for small examples

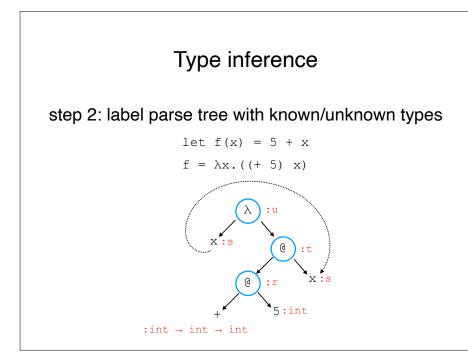
Robin Milner

Hinley-Milner algorithm

Has three main phases:

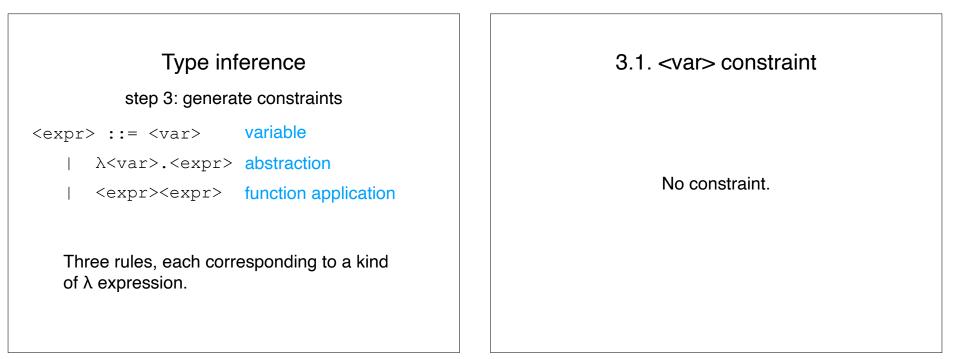
- 1. Assign known types to each subexpression
- 2. Generate type constraints based on rules of λ calculus:
 - a. Abstraction constraints
 - b. Application constraints
- 3. Solve type constraints using unification.

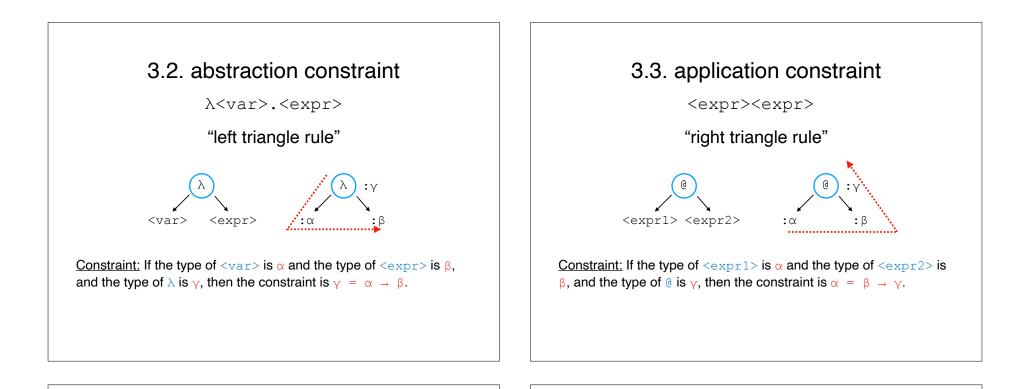


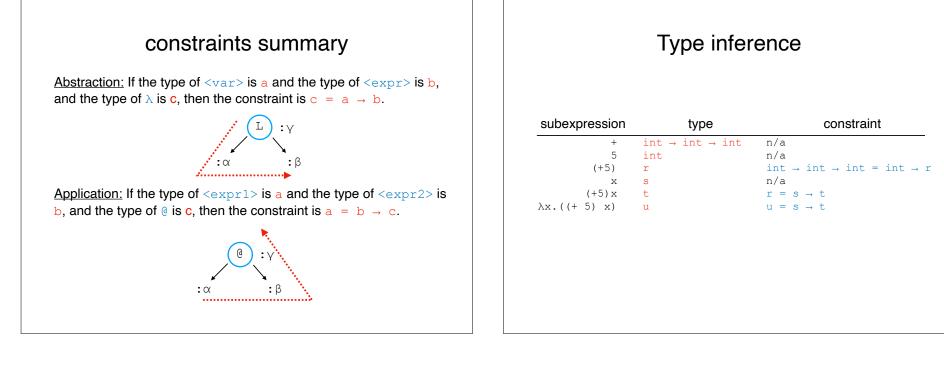


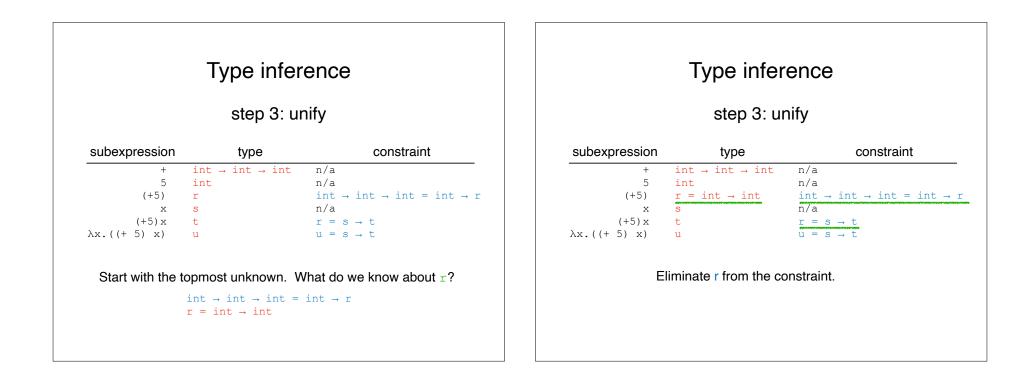
it is often helpful to have types in tabular form

+ int \rightarrow int \rightarrow in
5 int
(+5) r
X S
(+5) x t
λx.((+ 5) x) u









step 3: unify

subexpressior	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→in
Х	S	n/a
(+5) x	t	int \rightarrow int = s \rightarrow t
λx.((+ 5) x)	u	u = s → t
	Eliminate r from the co	

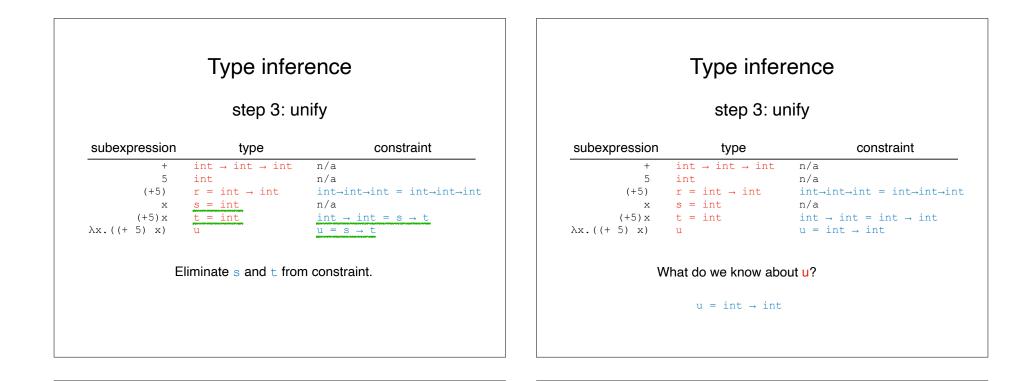
Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→int
X	S	n/a
(+5) x	t	int \rightarrow int = s \rightarrow t
λx.((+ 5) x)	u	$u = s \rightarrow t$

What do we know about ${\tt s}$ and ${\tt t}$?

int \rightarrow int = s \rightarrow t s = int t = int



step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→int
X	s = int	n/a
(+5) x	t = int	int \rightarrow int = int \rightarrow int
λx.((+ 5) x)	$u = int \rightarrow int$	$u = int \rightarrow int$

Eliminate u from constraint.

Type inference

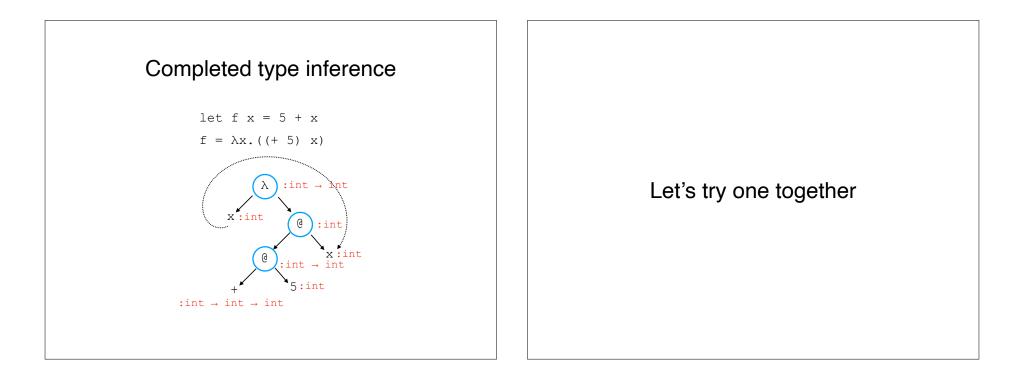
step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→int
Х	s = int	n/a
(+5) x	t = int	int \rightarrow int = int \rightarrow int
λx.((+ 5) x)	$u = int \rightarrow int$	int \rightarrow int = int \rightarrow int

Done when there is nothing left to do.

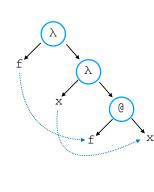
Sometimes unknown types remain.

An unknown type means that the function is polymorphic.



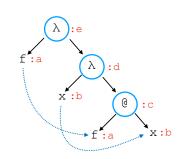
1. convert to λ expression

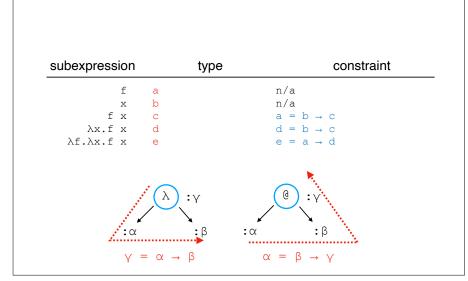
let apply f x = f x apply = $\lambda f \cdot \lambda x \cdot f x$



2. label with type variables

let apply f x = f x apply = $\lambda f \cdot \lambda x \cdot f x$





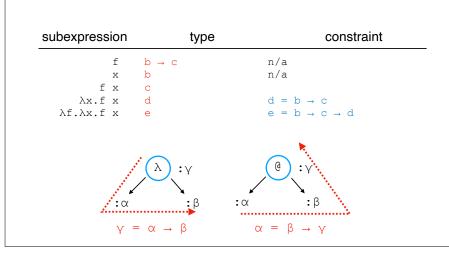
3. generate constraints

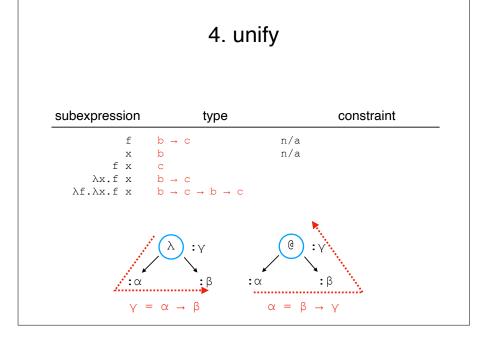
ubexpression	type	constraint
f	a	n/a
х	b	n/a
f x	С	$a = b \rightarrow c$
λx.f x	d	$d = b \rightarrow c$
λf.λx.f x	е	$e = a \rightarrow d$
.α	λ :γ ;β	(^α :γ,,,,,,,, .

4. unify

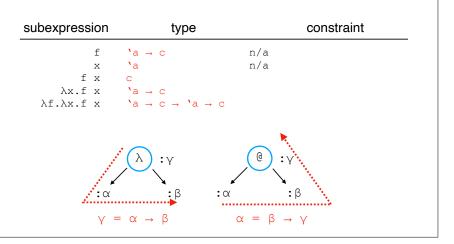
4. unify subexpression type constraint n/a f b → c n/a b х f x С λx.f x $b \rightarrow c$ λf.λx.f x $e = b \rightarrow c \rightarrow b \rightarrow c$ е **:**Y :α :β :α :β $\gamma = \alpha \rightarrow \beta$ $\alpha = \beta \rightarrow \gamma$

4. unify

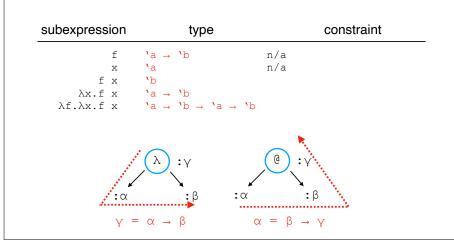




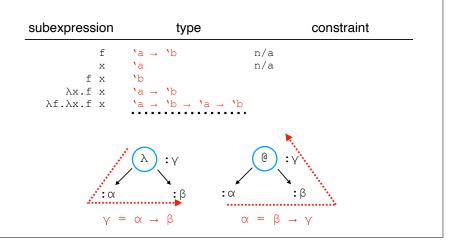
5. rename variables in alpha order

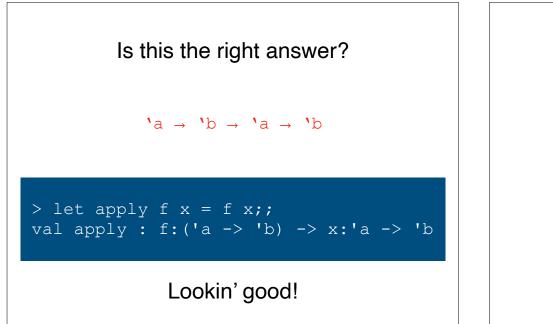


5. rename variables in alpha order



5. rename variables in alpha order





Try this one at home let f g x = g (g x)

Recap & Next Class

Today:

Type inference

Next class:

Parsing