CSCI 334:
Principles of Programming Languages

Lecture 11: Midterm Exam Review

Instructor: Dan Barowy

Williams

Announcements

-Midterm exam, in class, Thursday, Oct 19.
*Field trip to WCMA, Thursday, Nov 2.
*Colloguium: What | Did Last Summer (Research

Edition), 2:35pm in Wege Auditorium.

Announcements

*TA Applications due Friday, Oct 27.
*TA Evaluation forms due Friday, Oct 27.

Your to-dos

1. Study for Thursday’s exam.

What is a language?

In this class, we concern ourselves with a specific
formulation of “language,” called a formal language.

A formal language is the set of words whose letters
are taken from some alphabet and whose construction
follows some rules.

Example:

L = {a, aa, b, bb, ab, ba}

What is a programming language?

A programming language is defined by two machines:

1. Asyntax machine that determines the set of
strings that are in the language.

2. A semantics machine that determines what gets
done (i.e., what computational work) with an
accepted string.

5 = {a, b} We spend a lot of time in PL
thinking about these machines,
<expr> ::= <letter> | <letter><letter> which we call language models.
<letter> ::= a | b
ML unit datatype
* Robin Milner

*How to program tactics?

* A “meta language” is needed
*ML is born (1973)

* First impression upon

encountering a computer:

"Programming was not a very
beautiful thing. | resolved |
would never go near a

computer in my life."

$ dotnet fsi

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

> unit;;

unit;;

AANANA

stdin(l,1) : error FS0039: The value or constructor 'unit' is
not defined.

> ()i
val it : unit = ()

>

How does one obtain a value of unit? ()

You can also ignore...

> let foo() = 2;;
val foo : unit -> int

> foo();;
val it : int

> ignore (foo());::
val it : unit = ()

> foo() |> ignore;;
val it : swnit = ()

>

“forward pipe” operator
<expr> |> <expr>

foo () |> ignore

Pattern matching

let rec product nums =
if (nums = []) then
1

else
(List.head nums)
* product (List.tail nums)

Using patterns...

let rec product nums =
match nums with
| [] -> 1
| xX::xs -> x * product xs

Activity: Pattern matching on integers

Write a function 1istOfInts that returns a list
of integers from zero to n.

let rec listOfInts n =
match n with

| 0 => [0]
| 1 -=> i :: 1listOfInts (i - 1)

Oops! This returns the list backward.

Let’s flip it around.

Revisiting local declarations

Let’s fix our code the lazy way...

let 1istOfInts n =
let rec 1i n =
match n with

| 0 => [0]
| 1 -=> i :: 1listOfInts (i - 1)
1li n |> List.rev

... by defining a function inside our function.

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

* by product, or
* by sum.

You've already seen product types: tuples and records.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

We’ll focus on sum types.

A “move” function in a game (F#)

Discriminated Union (sum type)

type Direction =
North | South | East | West;

let move coords dir =
match coords,dir with
| (x,y),North -> (x,y - 1)
| (x,y),South -> (x,y + 1)

+ Above is an “incomplete pattern”
* ML will warn you when you’ve missed a case!

* “proof by exhaustion”

ADTs can be recursive and generic

type MyList<'a> =
| Empty
| NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty (2, Empty);;
val it : MyList<int> = NonEmpty (2,Empty)

Avoiding errors with patterns

* Another example: handling errors.
e SML has exceptions (like Java)
e But an alternative, easy way to handle many

errors is to use the option type:

type option<‘a> =

| None
| Some of 'a

‘.N. ’/A @

¢!

Y-}
3, ou

map

Intuition:

I

Like a for loop, but without mutable variables

List.map (fun x -> x + 1) [1;2;3;4;5]

Intuition:

List.fold

(fun acc x —-> acc+x) 0

[1;2;3;4;5]

Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit>
| <num><digit>

as

“num is defined as a digit or as a num followed by a
digit.”

Lambda Calculus Grammar Derivation Tree

<expr> ::i= <value> We can create a “derivation tree” by following

| <abs> the rules of a grammar as we interpret a

| <app> sentence of a language.

| <parens>

AX . XX
<var> =o€ {a ... z}
<abs> 1= A<var>.<expr> cexpression>
<app> - <expr><expr> <abstraction>
<parens> o (<expr>) <variable> <expression>
X <application>
<value> ::=v €N ‘pp _
<expression> <expression>
| <var> <variable> <variable>
' M
Abstract Syntax Tree Free vs bound variables
(AX.xX) X
<application>
<abstraction> <variable>
s ; / \
<variable> <vari¢able> X
! * bound free

Obtained by removing all nonterminals not
associated with an operation.

Evaluation: Lambda calculus is like algebra

(AX.X)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

a-Reduction

(AX.xX) X

This expression has two different x variables

Which should we rename?

Rule:
a-reduction
[Ax.<expr>] =, [Ay.[y/x]<expr>]
B-reduction
[y/x]<expr> means “substitute y for x in <expr>”
B-Reduction
(Ax.x)y (AX.AY.VX) XY given
How we “call” or apply a function to an (Aa.Ay.ya)xy a-reduce a for x
argument (Aa.Ab.ba)xy a-reduce b for y
(Ab.bx) vy B-reduce x for a
Rule: (yx) B-reduce y for Db
X remove parens
[(Ax.<expr>)y] =g [[y/x]<expr>] Y P

How far do we go?

We keep going until there is nothing left to simplify.

X 4— done
XX 44— done
AX.Y 4— done

(AX.XY)Z <4— notdone

That “most simplified” expression is called a
normal form.

An expression that can be simplified is
a called a redex.

Watch out!

AX . Xy given

Ay. [y/x]xy a-reduce y for x

AY.VY inner a-reduction
this is incorrect!

The lambda has “captured” the free v.
Substitution must be capture-avoiding.

Watch out!

(AX.Ax.xX)x
([x/x]A%.x%)
(Ax.x)

given

B-reduce x for x
B-reduce inner expr
done

The inner lambda term redefines x and
therefore “blocks” substitution of x.

Sometimes multiple reductions available

Order (mostly) does not matter

M
/ \ fM— M;and M = M,
M, M, then My #* Nand M, =»* N
- : for some N

“confluence”

Normal order
(AX.V) ((AxX.xXX) (AX.XX))

r'edex (outermost leftmost)

o
el

f L 2 ; noT reducible
not reducible /|({ 2 \'

X X X

Redex: application with abstraction as left child.

Applicative order
(AX.V) ((Ax.xX) (AX.XX))

redex

redex (innermost leftmost)

g\z ; no‘r reducible

not reducible /(;

X X X

Redex: application with abstraction as left child.

Trouble matching parens? Try this.

Intuition: total function

f(x)=x+5

For every element in x, there is a corresponding
elementin y. x maps to at most one element iny.

Intuition: partial function

undefined The graph of a function

f(x)=x+5
{<X, x+5> | x € 7}

{<X, x+5> | x is an integer}

f(x) = 5/x . .
() The graph is not a picture!
x still maps to at most one element iny,

however, there is not a y for every x.

Decidability Problems The Halting Problem

Decide whether program P halts on input x.
A decidability problem is a question with a yes

or no answer about a particular input. Given program P and input x,

“Is x prime?” returns true if P (x) halts

Halt (P, x) = t therwi
In CS, we care about whether there is an reurns false otherwise

algorithm for solving decidability problems. _ _
How might this work?

If there is no algorithm, then the problem is o . _ _
undecidable. Fact: it is provably impossible to write Halt

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

a——R

problem problem

Reductions

let reducer (x: int) (y: int) = 0-(0-x-y)

Reductions

If we can build this new machine,
what does that mean for Halt,?

Halt, is not computable.

Reductions

We can use the Halting Problem to show that other
problems cannot be solved by reduction to the
Halting Problem.

We cannot tell, in general...

. if a program will run forever.

. if a program will eventually produce an error.
. if a program is done using a variable.

. if a program is a virus!

Q&A

Recap & Next Class

Today:

Midterm Exam Review

Next class:

Midterm Exam

