
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: Midterm Exam Review

Announcements
•Midterm exam, in class, Thursday, Oct 19.
•Field trip to WCMA, Thursday, Nov 2.
•Colloquium: What I Did Last Summer (Research
Edition), 2:35pm in Wege Auditorium.

Announcements
•TA Applications due Friday, Oct 27.
•TA Evaluation forms due Friday, Oct 27.

•

Your to-dos

1. Study for Thursday’s exam.

What is a language?
In this class, we concern ourselves with a specific
formulation of “language,” called a formal language.

A formal language is the set of words whose letters
are taken from some alphabet and whose construction
follows some rules.

Example:

L = {a, aa, b, bb, ab, ba}

Σ = {a, b}

<expr> ::= <letter> | <letter><letter>
<letter> ::= a | b

What is a programming language?

A programming language is defined by two machines:
1. A syntax machine that determines the set of

strings that are in the language.
2. A semantics machine that determines what gets

done (i.e., what computational work) with an
accepted string.

We spend a lot of time in PL
thinking about these machines,

which we call language models.

ML
• Robin Milner

• How to program tactics?

• A “meta language” is needed

• ML is born (1973)

• First impression upon

encountering a computer:

"Programming was not a very

beautiful thing. I resolved I

would never go near a

computer in my life."

unit datatype
$

How does one obtain a value of unit?

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

 unit;;
 ^^^^

stdin(1,1): error FS0039: The value or constructor 'unit' is
not defined.

>
val it : unit = ()

>

$ dotnet fsi

> unit;;

> ();;

()

val it : unit = ()

>

> ignore (foo());;

val it : int = 2

>

val foo : unit -> int

>

You can also ignore…
> let foo() = 2;; >

> foo();;

val it : unit = ()

>

> foo() |> ignore;;

“forward pipe” operator
<expr> |> <expr>

foo() |> ignore

Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

Activity: Pattern matching on integers

Write a function listOfInts that returns a list
of integers from zero to n.

Oops! This returns the list backward.

Let’s flip it around.

let rec listOfInts n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)
 li n |> List.rev

… by defining a function inside our function.

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

type Direction =
 North | South | East | West;

let move coords dir =
 match coords,dir with
 |(x,y),North -> (x,y - 1)
 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (F#)
Discriminated Union (sum type)

type MyList<'a> =
 | Empty
 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =
| None
| Some of 'a

a function
map

1

3

2

4

5

1

3

2

4

5

Like a for loop, but without mutable variables

List.map (fun x -> x + 1) [1;2;3;4;5]

Intuition:

fold

1

3

2

4

5

1

3

2

4

5

List.fold (fun acc x -> acc+x) 0 [1;2;3;4;5]

Intuition:

+

3 +

6 +

10+

0 + 1
Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit>
 | <num><digit>

as

“num is defined as a digit or as a num followed by a
digit.”

Lambda Calculus Grammar

<expr> ::= <value>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ
 | <var>

Derivation Tree

We can create a “derivation tree” by following
the rules of a grammar as we interpret a
sentence of a language.

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

Abstract Syntax Tree

(λx.x)x

<application>

<abstraction>

<variable> <variable>

x x

<variable>

x

Obtained by removing all nonterminals not
associated with an operation.

Free vs bound variables

(λx.x)x

freebound

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

⟦λx.<expr>⟧ =α ⟦λy.[y/x]<expr>⟧

[y/x]<expr> means “substitute y for x in <expr>”

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

Rule:

⟦(λx.<expr>)y⟧ =β ⟦[y/x]<expr>⟧

(λx.λy.yx)xy given

(λa.λy.ya)xy α-reduce a for x

(λa.λb.ba)xy α-reduce b for y

(λb.bx)y β-reduce x for a

(yx) β-reduce y for b

yx remove parens

How far do we go?

x

We keep going until there is nothing left to simplify.

(λx.xy)z

xx

λx.y

That “most simplified” expression is called a
normal form.

done
done
done
not done

An expression that can be simplified is
a called a redex.

Watch out!

λx.xy given
λy.[y/x]xy α-reduce y for x
λy.yy inner α-reduction

The lambda has “captured” the free y.
Substitution must be capture-avoiding.

this is incorrect!

Watch out!

(λx.λx.x)x given
([x/x]λx.x) β-reduce x for x
(λx.x) β-reduce inner expr

The inner lambda term redefines x and
therefore “blocks” substitution of x.

done

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

Sometimes multiple reductions available

(λx.y)((λx.xx)(λx.xx))

λ

@

@

x y λ

x @

x x

λ

x @

x x

Redex: application with abstraction as left child.

redex

redex

not reducible

not reducible

(outermost leftmost)

Normal order
(λx.y)((λx.xx)(λx.xx))

λ

@

@

x y λ

x @

x x

λ

x @

x x

Redex: application with abstraction as left child.

redex

redex

not reducible

not reducible

(innermost leftmost)

Applicative order

Trouble matching parens? Try this.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2
1 2 3 3 2 2 3 4 4 3 2 1 0

2

1

3

4

5

7

6

8

9

f(x) = x + 5

Intuition: total function

For every element in x, there is a corresponding
element in y. x maps to at most one element in y.

x

y

0

2

1

3

4

5/2

5

5/3

5/4

f(x) = 5/x

Intuition: partial function

x still maps to at most one element in y,
however, there is not a y for every x.

x

y

undefined
The graph of a function

f(x) = x + 5

{<x, x+5> | x ∈ ℤ}

{<x, x+5> | x is an integer}

The graph is not a picture!

Decidability Problems

A decidability problem is a question with a yes
or no answer about a particular input.

“Is x prime?”

In CS, we care about whether there is an
algorithm for solving decidability problems.

If there is no algorithm, then the problem is
undecidable.

The Halting Problem

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Decide whether program P halts on input x.

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

A Breducer

problem problem

Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = 0-(0-x-y)

Reductions

If we can build this new machine,
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int
main(… 1

We can use the Halting Problem to show that other
problems cannot be solved by reduction to the
Halting Problem.

We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!

Q&A

Recap & Next Class

Today:

Next class:

Midterm Exam Review

Midterm Exam

