
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: Midterm Exam Review

Announcements
•Midterm exam, in class, Thursday, Oct 19.
•Field trip to WCMA, Thursday, Nov 2.
•Colloquium: What I Did Last Summer (Research 
Edition), 2:35pm in Wege Auditorium.

Announcements
•TA Applications due Friday, Oct 27.
•TA Evaluation forms due Friday, Oct 27.

•

Your to-dos

1. Study for Thursday’s exam.



What is a language?
In this class, we concern ourselves with a specific 
formulation of “language,” called a formal language.

A formal language is the set of words whose letters 
are taken from some alphabet and whose construction 
follows some rules.

Example:

L = {a, aa, b, bb, ab, ba}

Σ = {a, b}

<expr> ::= <letter> | <letter><letter> 
<letter> ::= a | b

What is a programming language?

A programming language is defined by two machines:
1. A syntax machine that determines the set of 

strings that are in the language.
2. A semantics machine that determines what gets 

done (i.e., what computational work) with an 
accepted string.

We spend a lot of time in PL
thinking about these machines,

which we call language models.

ML
• Robin Milner

• How to program tactics?

• A “meta language” is needed

• ML is born (1973)

• First impression upon 

encountering a computer: 

"Programming was not a very 

beautiful thing. I resolved I 

would never go near a 

computer in my life."

unit datatype
$

How does one obtain a value of unit?

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5

Copyright (c) Microsoft Corporation. All Rights Reserved.


For help type #help;;


>

  unit;;

  ^^^^


stdin(1,1): error FS0039: The value or constructor 'unit' is 
not defined.


>
val it : unit = ()


>

$ dotnet fsi

> unit;;

> ();;

()



val it : unit = ()


>

> ignore (foo());;


val it : int = 2


>

val foo : unit -> int


>

You can also ignore…
> let foo() = 2;;
>

> foo();;

val it : unit = ()


>

> foo() |> ignore;;

“forward pipe” operator
<expr> |> <expr>

foo() |> ignore

Pattern matching
let rec product nums = 

  if (nums = []) then

    1 

  else

    (List.head nums)

    * product (List.tail nums)

let rec product nums = 

  match nums with

  | []    -> 1

  | x::xs -> x * product xs

Using patterns…

Activity: Pattern matching on integers

Write a function listOfInts that returns a list 
of integers from zero to n.

Oops!  This returns the list backward.

Let’s flip it around.

let rec listOfInts n = 

  match n with

  | 0 -> [0]

  | i -> i :: listOfInts (i - 1)

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n = 

  let rec li n =

    match n with

    | 0 -> [0]

    | i -> i :: listOfInts (i - 1)

  li n |> List.rev

… by defining a function inside our function.



Algebraic Data Type

An algebraic data type is a composite data type, made by 
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type 
is the cartesian product of its component types.

type Direction =  
    North | South | East | West;

let move coords dir =

  match coords,dir with

  |(x,y),North -> (x,y - 1)

  |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (F#)
Discriminated Union (sum type)

type MyList<'a> =

      | Empty

      | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;

    val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many 

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =

| None

| Some of 'a



a function
map
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Like a for loop, but without mutable variables

List.map (fun x -> x + 1) [1;2;3;4;5]

Intuition:

fold
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List.fold (fun acc x -> acc+x) 0 [1;2;3;4;5]

Intuition:

+

3 +

6 +

10+

0 + 1
Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit>

       |  <num><digit>

as

“num is defined as a digit or as a num followed by a 
digit.”



Lambda Calculus Grammar

<expr>   ::= <value>


          |  <abs> 

          |  <app>


          |  <parens>


<var>    ::= α ∈ { a ... z } 
<abs>    ::= λ<var>.<expr>


<app>    ::= <expr><expr>


<parens> ::= (<expr>)


<value>  ::= v ∈ ℕ

          |  <var>

Derivation Tree

We can create a “derivation tree” by following 
the rules of a grammar as we interpret a 
sentence of a language.

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

Abstract Syntax Tree

(λx.x)x


<application>

<abstraction>

<variable> <variable>

x x

<variable>

x

Obtained by removing all nonterminals not 
associated with an operation.

Free vs bound variables

(λx.x)x


freebound



Evaluation: Lambda calculus is like algebra

(λx.x)x


Evaluation consists of simplifying an 
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

α-Reduction

(λx.x)x


This expression has two different x variables

Which should we rename?

Rule:

⟦λx.<expr>⟧ =α ⟦λy.[y/x]<expr>⟧

[y/x]<expr> means “substitute y for x in <expr>”

β-Reduction

(λx.x)y


How we “call” or apply a function to an 
argument

Rule:

⟦(λx.<expr>)y⟧ =β ⟦[y/x]<expr>⟧

(λx.λy.yx)xy given

(λa.λy.ya)xy α-reduce a for x

(λa.λb.ba)xy α-reduce b for y

(λb.bx)y β-reduce x for a

(yx) β-reduce y for b

yx remove parens



How far do we go?

x


We keep going until there is nothing left to simplify.

(λx.xy)z


xx


λx.y


That “most simplified” expression is called a 
normal form.

done
done
done
not done

An expression that can be simplified is
a called a redex.

Watch out!

λx.xy given
λy.[y/x]xy α-reduce y for x
λy.yy inner α-reduction

The lambda has “captured” the free y.
Substitution must be capture-avoiding.

this is incorrect!

Watch out!

(λx.λx.x)x given
([x/x]λx.x) β-reduce x for x
(λx.x) β-reduce inner expr

The inner lambda term redefines x and 
therefore “blocks” substitution of x.

done

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

Sometimes multiple reductions available



(λx.y)((λx.xx)(λx.xx))

λ
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Redex: application with abstraction as left child.

redex

redex

not reducible

not reducible

(outermost leftmost)

Normal order
(λx.y)((λx.xx)(λx.xx))

λ
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x x

λ
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x x

Redex: application with abstraction as left child.

redex

redex

not reducible

not reducible

(innermost leftmost)

Applicative order

Trouble matching parens?  Try this.

(λa.(λz.(+ x z))((λz.(+ x z)) a )) 2
1 2 3 3 2 2 3 4 4 3 2 1 0
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f(x) = x + 5

Intuition: total function

For every element in x, there is a corresponding 
element in y.  x maps to at most one element in y. 

x

y
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f(x) = 5/x

Intuition: partial function

x still maps to at most one element in y, 
however, there is not a y for every x.

x

y

undefined
The graph of a function

f(x) = x + 5

{<x, x+5> | x ∈ ℤ}

{<x, x+5> | x is an integer}

The graph is not a picture!

Decidability Problems

A decidability problem is a question with a yes 
or no answer about a particular input.

“Is x prime?”

In CS, we care about whether there is an 
algorithm for solving decidability problems.

If there is no algorithm, then the problem is 
undecidable.

The Halting Problem

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Decide whether program P halts on input x.



Reductions

A reduction is an algorithm that transforms an instance of 
one problem into an instance of another.  Reductions are 
often employed to prove something about a problem 
given a similar problem.

A Breducer

problem problem

Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = 0-(0-x-y)

Reductions

If we can build this new machine, 
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int 
main(… 1

We can use the Halting Problem to show that other 
problems cannot be solved by reduction to the 
Halting Problem.

We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!



Q&A

Recap & Next Class

Today:

Next class:

Midterm Exam Review

Midterm Exam


