
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 10: Computability, part 2

Topics

Halting problem
Reduction proofs

Garbage collection

Your to-dos

1. Lab 5, due Sunday 10/15 (partner lab)
2. As a part of lab 5, read How to Fix a Motorcycle.

Announcements
•Midterm exam, in class, Thursday, Oct 19.
•Field trip to WCMA, Thursday, Nov 2.
•Colloquium: What I Did Last Summer (Research
Edition), 2:35pm in Wege Auditorium.

Announcements
•TA Applications due Friday, Oct 27.
•TA Evaluation forms due Friday, Oct 27.

•

Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly integrated
into a programming language runtime.

John McCarthy

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location “mark” bit

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells

3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

The Halting Problem: Proof
Suppose:

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Construct:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

{Halt always
halts!

{
DNH

does not
always halt!

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

P PP
P PP

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

DNH DNHDNH
DNH DNHDNH

This literally makes no sense. Contradiction!

Therefore, the Halt function cannot exist.

What was our one assumption? Halt exists.

Need more explanation?
Watch this!

https://youtu.be/macM_MtS_w4

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

A Breducer

problem problem

Reductions

In this class, we will focus on proving things about
impossibility, but reductions are much more general. In
other cases, we prove things about complexity.

A Breducer

problem problem

Reductions
Reductions are often used in a counterintuitive way.

Bar Fooreducer

problem problem

For example, if we want to know whether problem Foo is
impossible, we assume Foo is possible, and then use that
fact to show that problem Bar (which we already know to
be impossible) appears to be possible.

The above is a contradiction, meaning that Foo is not
possible.

Reductions
Observe the direction of the reduction.

Bar Fooreducer

problem problem

For computability proofs, we reduce the problem we
already know something about to the problem we want
to understand.

If the reduction is possible, it means that Foo is impossible
because we already know that Bar is impossible.

Reductions
This direction seems backward to most people.

Bar Fooreducer

problem problem

However, this counterintuitive direction is a feature common
to many reductions.

See the reading Proof by Reduction to understand the logic
in more detail.

Reductions

An important part of a reduction is that the reducer be an
ordinary algorithm.

The reducer should not solve the problem. A reducer just
converts problems from one form to another.

You will get a lot more exposure to reductions in CSCI 361.

Bar Fooreducer

problem problem

Reductions

2

Plus

1

3

The humble algorithm.

(sorry, vegetarians)

Reductions

2

Plus

1

Minus

3

Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = 0-(0-x-y)

Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is not computable.

Halt0

true

int main(…){
…
return 0
}

Reductions

Is Halt0 computable?
A function f(i) halts not if and only if f does not halt on input i.

1

Reductions

A function f(i) halts not if and only if f does not halt on input i.

def halt(f, i):
 return not halt0(f, i);

If Halt0 is computable, couldn’t we do this?

Assume that Halt0 is computable.
(e.g., it’s in your standard library)

Halt0

false

Reductions

Reduction: Construct Halt using Halt0.

Halt

true

int
main(… 1

Halt

true

int main(…){
…
return 0
}

1

Reductions

We know that Halt is not computable.

Reductions

If we can build this new machine,
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int
main(… 1

Activity

Prove that the Halting-No-Input problem is undecidable.

Problem: given a program P that requires no input,
does P halt?

The Halting Problem

… helps us to understand the difficulty of many
other problems.

We can use the Halting Problem to show that other
problems cannot be solved by reduction to the
Halting Problem.

We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!

Generality
def myprog(x):
 return 0

def Halt(f,i):
 if(f = “def myprog(x):\n\treturn 0”):
 return true
 else
 return false

The Halting Problem is about an arbitrary program.

Recap & Next Class

Today:

Next class:

Halting problem

Midterm review

Reduction proofs

