
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: Computability

Topics

Desugaring code
Function graphs

Decidability

Your to-dos

1. Lab 4, due Sunday 10/8 (partner lab)
2. Read Proof by Reduction for Thur, 10/12

Announcements

•Midterm exam, in class, Thursday, Oct 19.
•Field trip to WCMA, Thursday, Nov 2.
•Colloquium: Leveraging ML Predictions for
Beyond-Worst-Case Algorithm Design, 2:35pm
in Wege Auditorium.

Traditionally, we measure the performance of algorithms in the worst-case model.
 That is, the algorithms are designed to perform well against an adversarial input
sequence. While the worst-case paradigm provides extremely strong guarantees, it can
often be too pessimistic compared to the empirical performance on typical datasets.
This talk is about a growing line of work that incorporates machine learned predictions
to break through worst-case running time barriers.

Translating real code to lambda expressions

def f(x):

 return 5 + x

λx.(+)5 x

λ

x +

5 x

f = Computability

0

2

1

3

4

5

7

6

8

9

f(x) = x + 5

Intuition: total function

For every element in x, there is a corresponding
element in y. x maps to at most one element in y.

x

y
0

2

1

3

4

5/2

5

5/3

5/4

f(x) = 5/x

Intuition: partial function

x still maps to at most one element in y,
however, there is not a y for every x.

x

y

undefined

The graph of a function

f(x) = x + 5

{<x, x+5> | x ∈ ℤ}

{<x, x+5> | x is an integer}

The graph is not a picture!

f(x) = 5/x

{<x, 5/x> | x ∈ ℤ ∧ x ≠ 0}

The graph of a function

The graph is not a picture!

Undefinedness

x/0
Activity

Decidability Problems

A decidability problem is a question with a yes
or no answer about a particular input.

“Is x prime?”

In CS, we care about whether there is an
algorithm for solving decidability problems.

If there is no algorithm, then the problem is
undecidable.

The Halting Problem
Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

How might this work?
Clarifications:

P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

The Halting Problem

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Decide whether program P halts on input x.

Notes on the proof

We use two key ideas:

• Function evaluation by substitution
• Reductio ad absurdum (proof form)

The form of the proof is reductio ad absurdum.
Literally: “reduction to absurdity”.
Start with axioms and presuppose the
outcome we want to show.
Then, following strict rules of logic, derive
new facts.
Finally, derive a fact that contradicts another
fact.
Conclusion: the presupposition must be false.

Notes on the proof Reductio ad Absurdum

A1 A2 A3

H

F1

F2

¬A3

¬

😧

Function Evaluation by Substitution
def addone(x):

 return x + 1

addone(1)

[1/x]x + 1

1 + 1

λx.(+ x 1)1

[1/x](+ x 1)

(+ 1 1)

22

The Halting Problem

Notes on the proof:

The proof relies on the kind of substitution
that we’ve been using to “compute” functions
in the lambda calculus.

Remember: we are looking to produce a
contradiction.

The proof is hard to “understand” because the
facts it derives don’t actually make sense.
Don’t read too deeply.

The Halting Problem: Proof
Suppose:

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Construct:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

{Halt
always
halts!

{
DNH

does not
always halt!

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if P(P) halts.
DNH(P) will halt if P(P) runs forever.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

P PP
P PP

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

DNH DNHDNH
DNH DNHDNH

This literally makes no sense. Contradiction!

Therefore, the Halt function cannot exist.

What was our one assumption? Halt exists.

Need more explanation?
Watch this!

https://youtu.be/macM_MtS_w4

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

A Breducer

problem problem

Reductions
Reductions are often used in a counterintuitive way.

Bar Fooreducer

problem problem

For example, if we want to know whether problem Foo is
impossible, we assume Foo is possible, and then use that
fact to show that problem Bar (which we already know to
be impossible) appears to be possible.

The above is a contradiction, meaning that Foo is not
possible.

Reductions

An important part of a reduction is that the reducer be an
ordinary algorithm.

The reducer should not solve the problem. A reducer just
converts problems from one form to another.

You will get a lot more exposure to reductions in CSCI 361.

Bar Fooreducer

problem problem

Reductions

2

Plus

1

3

The humble algorithm.

(sorry, vegetarians)

Reductions

2

Plus

1

Minus

3

Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = -(-x-y)

Recap & Next Class

Today:

Next class:

More lambda reductions

Consequences of computability for PL design

Function graphs
Decidability

