	Topics
CSCI 334: Principles of Programming Languages Lecture 8: Lambda, lambda, lambda!	Lambda calculus—how to survive it
Instructor: Dan Barowy Williams	
Your to-dos	Announcements
 Lab 4, due Sunday 10/8 (partner lab) Review handouts/feedback if you haven't already 	 Midterm exam, Thursday, October 19, on paper, in class. Resubmissions are due by the last day of the final exam reading period.

Mountain Day, whenever that is...

• No office hours (faculty "retreat")

Reduction strategies

($\lambda x. y$) (($\lambda x. xx$) ($\lambda x. xx$))

function argument

Reduction strategies

($\lambda x. y$) (($\lambda x. xx$) ($\lambda x. xx$))

function argument

Demonstration

Applicative order ("innermost leftmost") reduction

 $(\lambda x. y)$ (($\lambda x. xx$) ($\lambda x. xx$))

What does "innermost leftmost" mean?

More practice finding redexes

 $(\lambda a. (\lambda z. (+ x z)) ((\lambda z. (+ x z)) a)) 2$

When I say applicative order I mean: "leftmost innermost" application

Activity

Applicative order reduction:

 $(\lambda f.\lambda x.f(f x))(\lambda z.(+ x z))2$

Applicative order is "innermost leftmost" first.

Recap & Next Class

Today:

More lambda reductions

Next class:

Computability