
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 8: Lambda, lambda, lambda!

Topics

Lambda calculus—how to survive it

Your to-dos

1. Lab 4, due Sunday 10/8 (partner lab)
2. Review handouts/feedback if you haven’t

already…

Announcements

•Midterm exam, Thursday, October 19, on paper,
in class.

•Resubmissions are due by the last day of the
final exam reading period.

COOKIES

•No office hours (faculty “retreat”)

Mountain Day, whenever that is…

(λx.y)((λx.xx)(λx.xx))

Reduction strategies

function argument

(λx.y)((λx.xx)(λx.xx))

Reduction strategies

function argument

Which reduction do I perform?

(λx.y)((λx.xx)(λx.xx))

function argument
(λx.y)((λx.xx)(λx.xx))

function argument

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

Sometimes multiple reductions available

Demonstration

(λx.y)((λx.xx)(λx.xx))

Normal order (“outermost leftmost”) reduction

What does “outermost leftmost” mean?

(λx.y)((λx.xx)(λx.xx))

λ

@

@

x y λ

x @

x x

λ

x @

x x

Abstract syntax tree.
(contains only operators and values)

(λx.y)((λx.xx)(λx.xx))

λ

@

@

x y λ

x @

x x

λ

x @

x x

Redex: application with abstraction as left child.

redex

redex

not reducible

not reducible

(outermost leftmost)

Demonstration

(λx.y)((λx.xx)(λx.xx))

Applicative order (“innermost leftmost”) reduction

What does “innermost leftmost” mean?

(λx.y)((λx.xx)(λx.xx))

λ

@

@

x y λ

x @

x x

λ

x @

x x

Redex: application with abstraction as left child.

redex

redex

not reducible

not reducible

(innermost leftmost) The only equivalent expressions in the lambda
calculus are those that are textually identical.

Meaning of "equivalence"

λa.aa ≠ λb.bb

λa.aa = λa.aa

after alpha reducing a for b:

Although reduction order “does not matter”
(because the LC is confluent), only the normal
order reduction is guaranteed to terminate for

expressions that have a normal form.

One caveat about reduction orders

(see LC, part 2 from packet for more detail)

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Normal order:

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Applicative order:

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Neither:

Trouble matching parens? Try this.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2
1 2 3 3 2 2 3 4 4 3 2 1

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

When I say normal order, I mean: “leftmost outermost” application

More practice finding redexes

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

When I say applicative order I mean: “leftmost innermost” application

More practice finding redexes Activity

(λf.λx.f(f x))(λz.(+ x z))2

Normal order reduction:

Normal order is “outermost leftmost” first.

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Applicative order reduction:

Applicative order is “innermost leftmost” first.

Recap & Next Class

Today:

Next class:

More lambda reductions

Computability

