
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: Evaluation by Rewriting

Topics

Lambda calculus—how to evaluate it

Lambda calculus—how to parse it

Your to-dos

1. Lab 3, due Sunday 10/1 (solo lab) 
Give yourself enough time to learn a small 
amount of LATEX

2. Read Introduction to the Lambda Calculus, Part 
2, for Thursday 10/5.



Announcements

•I added more Office hours on Friday, every 
10-11am in the Ward Lab (TBL 301).

•30 minute, 1-on-1 mentoring with TA Paul Kim 
Email Paul at pk6@williams.edu  

Announcements

•CS Colloquium this Friday, Sept 29 @ 2:35pm in 
Wege Auditorium (TCL 123)

Dzung Pham (UMass Amherst, Williams ’20)

Dzung is a second year PhD student in working in the 
area of security and privacy for AI/ML systems under 
the  supervision  of  Prof.  Amir  Houmansadr.   Dzung 
worked at Meta on algorithms to stop fraud, scams, and 
harassment.

Dzung is also an alum of Williams College and pursued 
a double major in CS and statistics.  Dzung’s thesis 
was with Prof. Richard De Veaux in statistics, but he 
also worked on research projects with Profs. Bailey 
and Barowy (me!).

Lambda calculus grammar

<expr>  ::= <var>


         |  <abs> 

         |  <app>


<var>   ::= x 

<abs>   ::= λ<var>.<expr>


<app>   ::= <expr><expr>

<expr> is the start symbol.

Here is the syntax of the lambda calculus, expressed in BNF.



Parse tree

We can create a “derivation tree” by following 
the rules of a grammar as we interpret a 
sentence of a language.

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

For now, though, let’s focus on derivation.  What is the derivation for this 
lambda calculus expression?

Ambiguity

You might have noticed that there is an 
alternative parse tree.

λx.xx
<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

Note that BNF does not always capture every necessary detail.  For 
example, here is another potential derivation for the same expression.  
However, this derivation is not correct because the lambda calculus 
includes additional rules to eliminate ambiguity.  These rules are the most 
difficult rules for newcomers.

Abiguity

In fact, the lambda calculus is never 
ambiguous because of its precedence and 
associativity rules—see the reading.



Parentheses disambiguate grammar

Axiom of equivalence for parens

<expr> = (<expr>)

Let’s modify our grammar

One thing we can do is add parens to our grammar.

Lambda calculus grammar

<expr>   ::= <var>


          |  <abs> 

          |  <app>


          |  <parens>


<var>    ::= x 

<abs>    ::= λ<var>.<expr>


<app>    ::= <expr><expr>


<parens> ::= (<expr>)

While we’re at it…

<expr>   ::= <var>


          |  <abs> 

          |  <app>


          |  <parens>


<var>    ::= α ∈ { a ... z } 
<abs>    ::= λ<var>.<expr>


<app>    ::= <expr><expr>


<parens> ::= (<expr>)

Also, it is very helpful to have variables other than x.



Also…

<expr>   ::= <value>


          |  <abs> 

          |  <app>


          |  <parens>


<var>    ::= α ∈ { a ... z } 
<abs>    ::= λ<var>.<expr>


<app>    ::= <expr><expr>


<parens> ::= (<expr>)


<value>  ::= v ∈ ℕ

          |  <var>

Finally, we will sometimes add arbitrary literal values to the lambda 
calculus.  These are not strictly necessary, but they make working with the 
language a little easier.

Class Lambda Grammar

<expr>   ::= <value>


          |  <abs> 

          |  <app>


          |  <parens>


<var>    ::= α ∈ { a ... z } 
<abs>    ::= λ<var>.<expr>


<app>    ::= <expr><expr>


<parens> ::= (<expr>)


<value>  ::= v ∈ ℕ

          |  <var>

This expression is now unambiguous

(λx.x)x


<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

<parens>

With parens, our original expression is unambiguous.



However, this is the parse tree
we really care about

(λx.x)x


<application>

<abstraction>

<variable> <variable>

x x

<variable>

x

Eventually, you will see that what we really care about is the abstract 
syntax tree.

Free vs bound variables

(λx.x)x


freebound

One very important aspect of the lambda calculus is whether a variable is 
“free” or “bound.”  This expression has two different x variables in it.  Be 
on the lookout for this distinction.

Lambda calculus: relevance

Vector<Association<String,FrequencyList>> table =

new Vector<Association<String,FrequencyList>>();

let table = new Vector<>() 

…

Fundamental technique for building programming 
languages that work correctly (and intuitively!).

But it can also be leveraged to do some seemingly 
magical things, like type inference:

Vector<Association<String,FrequencyList>> table = new Vector<>();

Why are we learning this?  At its heart, the study of programming 
languages is about how a language “desugars” into a core mathematical 
idea.  You do not need the lambda calculus to build a programming 
language.  However, unless you understand the relationship between your 
language and the lambda calculus, certain kinds of insights about 
programs will be difficult or impossible to obtain.



class Program {

  public static void hello() {

    println(“Hello world!”);

  }


  public static void main(…) {

    hello();

  }

}

Call stack

main

hello

Evaluation: You know how Java does it
Now, let’s talk about how a program is evaluated.  You might have some 
sense of how some languages are evaluated, like Java.  C works 
essentially the same way as Java in this regard.

Evaluation: Lambda calculus is like algebra

(λx.x)x


Evaluation consists of simplifying an 
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

However, the lambda calculus is different.  It is more like algebra.

α-Reduction

(λx.x)x


This expression has two different x variables

Which should we rename?

Rule:

⟦λx.<expr>⟧ =α ⟦λy.[y/x]<expr>⟧

[y/x]<expr> means “substitute y for x in <expr>”

There are several “evaluation rules” in the lambda calculus.  We call these 
rules “reductions.”  The first is alpha reduction, which is used to rename a 
variable in an expression.



α-Reduction

(λx.x)x given
(λy.[y/x]x)x α-reduce y for x (binding)
(λy.y)x α-reduce y with x (expr)

For example, we can alpha reduce the expression (λx.x)x to (λy.y)x.  This 
is OK because we’re just renaming a bound variable.  Your intuition may 
already tell you that this is OK!  For example, you probably already know 
that the following two Java programs are the same.


public static int id(int x) {

  return x;

}


public static int id(int y) {

  return y;

}

Free vs bound variables

(λx.x)x


freebound

Note that there is a very important distinction between free and bound 
variables.  The inner (leftmost) x is defined by the abstraction.  The outer 
(rightmost) x is a TOTALLY DIFFERENT VARIABLE that happens to have 
the same name.  We do not know how it is defined in this expression, so 
we must treat it with caution.



Watch out!

λx.xy given
λy.[y/x]xy α-reduce y for x
λy.yy inner α-reduction

The lambda has “captured” the free y.
Substitution must be capture-avoiding.

this is incorrect!

Be careful not to “capture” a variable when performing an alpha reduction.

β-Reduction

(λx.x)y


How we “call” or apply a function to an 
argument

Rule:

⟦(λx.<expr>)y⟧ =β ⟦[y/x]<expr>⟧

The second reduction rule is beta reduction, which has essentially the 
same meaning as a “function call.”  It passes an argument into a function 
definition, discards the lambda, and then rewrites the body of the function 
definition.

Let’s reduce this

(λx.x)x


For example, let’s reduce this expression.  The result is ultimately x.



Watch out!

(λx.λx.x)x given
([x/x]λx.x) β-reduce x for x
(λx.x) β-reduce inner expr

The inner lambda term redefines x and 
therefore “blocks” substitution of x.

done

Not only do we want to avoid capturing variables, we must also make 
sure only to substitute as far as makes sense.  Here, the inner lambda 
redefines x, so we must stop after substituting the first one.  This is 
clearer if you do an alpha reduction first!

How far do we go?

x


We keep going until there is nothing left to simplify.

(λx.xy)z


xx


λx.y


That “most simplified” expression is called a 
normal form.

done
done
done
not done

An expression that can be simplified is
a called a redex.

How do we know when to stop evaluating?  The answer is when no 
redexes remain.

Try this one with a partner

(λx.λy.yx)xy

(don’t forget precedence/associativity rules)



Recap & Next Class

Today:

Next class:

Lambda calculus: how to parse

Lambda calculus: how to survive

Lambda calculus: how to evaluate

Final projects

Final project idea.  Start thinking about this.  This could obviously be 
drawn by a computer.  Could you make a language for a non-programmer 
artist to draw it?  Could it be a “joy” for that artist to use?


