
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: The Dream of Computation

1

Topics

Backus-Naur form

Lambda calculus—what it is

The dream

2

Your to-dos

1. Read Introduction to the Lambda Calculus, Part
2, for Thursday 9/28.

2. Lab 3, due Sunday 10/1 (solo lab) 
Give yourself enough time to learn a small
amount of LATEX

3

Announcements

•Office hours moved to 6-7pm today, TPL 306 (my
office)

•30 minute, 1-on-1 mentoring with TA Paul Kim 
Email Paul at pk6@williams.edu  

4

Announcements

•CS Colloquium this Friday, Sept 29 @ 2:35pm in
Wege Auditorium (TCL 123)

Dzung Pham (UMass Amherst, Williams ’20)

Dzung is a second year PhD student in working in the
area of security and privacy for AI/ML systems under
the supervision of Prof. Amir Houmansadr. Dzung
worked at Meta on algorithms to stop fraud, scams, and
harassment.

Dzung is also an alum of Williams College and pursued
a double major in CS and statistics. Dzung’s thesis
was with Prof. Richard De Veaux in statistics, but he
also worked on research projects with Profs. Bailey
and Barowy (me!).

5

what does this return?

List.fold

 (fun acc x -> acc + string x)

 ""

 (Seq.toList "williams")

6 What does this return? Why?

fold right
List.foldBack

 (fun x acc -> acc+x) [1;2;3;4] 0

[1;2;3;4], acc = 0

[1;2;3], acc = 0+4

[1;2], acc = 4+3

[1] acc = 7+2

[], acc = 9+1

returns acc = 10

7 We can also fold in the opposite direction.

what does this return?

List.foldBack

 (fun x acc -> acc + string x)

 (Seq.toList "williams")

 ""

8 What does this code return?

Language of languages

9 Stepping up several levels, let’s now talk philosophically about
programming languages. Specifically, what is the “language” of a
computer?

The York Plays (late 15th century) comprise one of the
four complete surviving medieval play cycles
sometimes known as ‘mystery cycles’. They are a
series of short plays, known as ‘pageants’, which were
performed by members of different craft guilds (groups
of people practicing the same trade who formed a club)
at locations throughout the city of York. —British Library

10 Please read this for me. You can’t? Why not?

Why couldn’t you understand the script?
It’s written in English, after all!

• Appearance: syntax
• What is the set of valid symbols?
• What arrangements of symbols are

permissible?
• Meaning: semantics

• What does a given arrangement of
symbols correspond mean?

We don’t know the “ground rules” for the
document as it is written:

11 But it’s English! Nevertheless, it is unlikely that you would be able to read
it, as its rules have changed over time. There are two kinds of rules.

Formal language

A formal language is the set of permissible sentences
whose symbols are taken from an alphabet and whose
word order is determined by a specific set of rules.

English is not a formal language.

Java is a formal language.

Intuition: a language that can be defined mathematically,
using a grammar.

12 We’ve briefly discussed this before…

More formally
L(G) is the set of all sentences (a “language”) defined by
the grammar, G.

G = (N, Σ, P, S) where
N is a set of nonterminal symbols.
Σ is a set of terminal symbols.

P is a set of production rules of the form 
 N ::= (Σ⋃N)*
 where * means “zero or more” (Kleene star) and
 where ⋃ means set union
S∈N denotes the “start symbol.”

13 What really is a formal language? What’s the “form”? The form is G = (N,
sigma, P, S).

Backus-Naur Form (BNF)
More concretely, for programming languages, we

conventionally write G in a form called BNF.

John Backus Peter Naur
Invented in 1959 to describe the

ALGOL 60 programming language.

14 Although you could define a language using pure set theory, we prefer a
more convenient, but equivalent syntax: BNF. BNF was created to be
able to describe the syntax of any programming language, but it was
specifically developed when ALGOL was being designed.

Tower of Hanoi (ALGOL 60)
15 ALGOL looks a lot like a modern programming language! In fact, many

textbooks use ALGOL as a kind of algorithm pseudocode.

Backus-Naur Form (BNF)

Nonterminals, N, are in brackets: <expression>
Terminals, Σ, are “bare”: x
A production rule, P, consists of the ::= operator, a
nonterminal on the left hand side, and
a sequence of one or more symbols from N and Σ on the
right hand side.

<variable> ::= x

We use ε to denote the empty string.

The | symbol means “alternatively”: <num> ::= 1 | 2

16 How does BNF work? It works like this.

Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit>

 | <num><digit>

as

“num is defined as a digit or as a num followed by a
digit.”

17

Backus-Naur Form (BNF)

The following definition might look familiar:

<expr> ::= <num>

 | <expr> + <expr>

 | <expr> - <expr>

<num> ::= <digit>

 | <num><digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Conventionally, we ignore whitespace, but if it matters,
use the ␣ symbol. E.g.,

<expr>␣+␣<expr>

<expr> is the start symbol.

18 Here’s a definition for a simple language that can add multi-digit numbers.

What can computers do?

19 Now that we have a basic idea of describing syntax—which is the subject
of this week’s lab—let’s talk about a much more interesting topic: what
can and can’t computers do fundamentally?

The Dream

“I thought again about my early plan of a new
language or writing-system of reason, which
could serve as a communication tool for all
different nations... If we had such an universal
tool, we could discuss the problems of the
metaphysical or the questions of ethics in the
same way as the problems and questions of
mathematics or geometry. That was my aim:
Every misunderstanding should be nothing
more than a miscalculation (...), easily
corrected by the grammatical laws of that new
language. Thus, in the case of a controversial
discussion, two philosophers could sit down at
a table and just calculating, like two
mathematicians, they could say, 'Let us check
it up …’”

Wilhelm Gottfried Leibniz

20 One of the first people to wonder about this question was this bewigged
dude, the genius and polymath, Leibniz.

The Dream

Wilhelm Gottfried Leibniz

“stepped reckoner”

21 Leibniz actually attempted to build machines that realized his dream. He
started small, with a machine called the “stepped reckoner” that could
perform arithmetic: addition, subtraction, multiplication, and division. This
basic design was used for more than 200 years!

“What is the answer to the ultimate
question of life, the universe, and

everything?

22 Anyone here a fan of Douglas Adams? In the Hitchhiker’s Guide to the
Galaxy, philosophers build a machine to answer essentially the same
question, but they phrase their question so imprecisely as to get
nonsense out of the machine. “garbage in, garbage out” This, of course,
was comedy, but anyone who has read Douglas Adams before knows that
there’s always something interesting at the center of his jokes.

What is computable?

• Hilbert: Is there an algorithm

that can decide whether any
logical statement is valid?

• “Entscheidungsproblem” 

(literally “decision problem”)

• Leibniz thought so!

23 Over the years, though, what we mean when we ask “what can
computers do?” Has gotten more precise. It’s true that the stepped
reckoner could only do arithmetic, but that does not mean that we could
not build a more powerful machine. Hilbert thought this was a very
important question: what’s the most powerful machine we could build?
His idea was to separate the idea of what a specific machine could do
from the idea of what machines could do in principle, and his was the first
precise use of the work “algorithm.” Hilbert thought that the “toughest”
problem was simply for a machine to state, for a given logical statement,
whether the statement was true or false.

What is computable?
• Why do we care?

• f(x) = x + 1

• We can clearly do this with  

pencil and paper.

• ∫ 6x dx

• Also computable, in a different manner.

• We care because the computable functions can

be done on a “computer.”

24 Many mathematical problems reduce to this formulation. For example,
clearly arithmetic has a form that we can say true/false things about. And
calculus does too, although the steps are maybe a little different. But we
care, because at their heart, proving things about them is similar, and we
can imagine that anything that is “computable” in this sense can be
computed on a machine.

Lambda calculus
• Invented by Alonzo Church in  

order to solve  

the Entscheidungsproblem.

• Short answer to Hilbert’s 

question: no.

• Proof: No algorithm can decide equivalence of

two arbitrary λ-calculus expressions.

• By implication: no algorithm can determine

whether an arbitrary logical statement is valid.

25 There’s some interesting history here about Gödel that I am going to gloss
over, but the first person to really take a stab at the problem in the way
that Hilbert meant was this guy, Alonzo Church. To do that, he invented a
little language that he thought captured everything important about
computation. That language was called the lambda calculus. The lambda
calculus is computational logic in its purest form. And Church showed
that there is no algorithm that can decide the equivalence of two lambda
calculus expressions. So in essence, no algorithm can determine whether
an arbitrary logical statement is valid. This was obviously very
disappointing to lots of people, but, as it turns out, the devil is in the
details. We can still do a lot with computers!

What is the meaning of x in algebra?

26 Let’s spend a little time investigating the lambda calculus. Remember:
this is a different system of logic. Let’s start simply by looking at
something that is familiar to you. In algebra, what does x mean?

Pro tip

Don’t try to “understand” the
lambda calculus.

Aside from “variable,” “function definition,” and
“application,” it has no inherent meaning.

We ascribe meaning to it, just as we do with algebra.

The lambda calculus is simply a system for
reasoning by using the logic of functions.

27 Many first-timers get hung up on details of the lambda calculus.
Remember: there is no inherent meaning in a lambda calculus expression.
What a given expression means depends on how you ascribe meaning to
it.

Lambda calculus grammar

<expr> ::= <var>

 | <abs> 

 | <app>

<var> ::= x 

<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<expr> is the start symbol.

28 Here is the syntax of the lambda calculus, expressed in BNF.

What is a variable?

<var> ::= x

It’s just a value.

29 So what is a variable? It’s just a value. Which value? It does not really
matter, in the same way that the value of x does not really matter in
algebra.

What is an abstraction?

<abs> ::= λ<var>.<expr>

It’s a function definition

def foo(x):

 <expr>

30 What is abstraction? It’s a function definition.

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

argumentfunction

31 What is application? It’s a function call.

That’s it. That’s all of the lambda calculus.

Parsing and Parse Trees

There are at least two forms of trees
that we might refer to “parse trees”

Parsing is the process of analyzing a string of
symbols, conforming to the rules of a formal
grammar, to understand:
1) whether that sentence is valid (s ∈ L(G)), or
2) the structure (e.g., “parts of speech”) of that

sentence (a parse tree).

32 So how do we “interpret” lambda calculus expressions? We need to
follow the rules of the grammar. This process is called “parsing.”

Derivation Tree

1+2+3

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

e

e+e

e+e

d

1 d

2

d

3

n

n n

Shows every step of how a sentence is parsed.

33 So, given a BNF grammar and an expression in that language, we can
trace through the steps we use to recognize a valid expression. If you do
that, you get what is called a “derivation tree.”

Abstract Syntax Tree

+
1

2 3
+

Ignores derivation details; only essential structure

1+2+3

In an AST, internal nodes are
operations, leaves are data.

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

34 Later on in this semester, we will ignore tiny details in derivation and focus
on a more meaningful version of a parse tree, called an “abstract syntax
tree.” ASTs better get at what a given expression means.

Parse tree

We can create a “derivation tree” by following
the rules of a grammar as we interpret a
sentence of a language.

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

35 For now, though, let’s focus on derivation. What is the derivation for this
lambda calculus expression?

Recap & Next Class

Today:

Next class:

BNF

Lambda calculus: how to evaluate

Lambda calculus / computation

Lambda calculus: more on derivation

36

