
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 5: Errors / Higher Order Functions

1

Announcements

•CS Colloquium this Friday, Sept 22 @ 2:35pm in
Wege Auditorium (TCL 123)

Your classmates
What I Did Last Summer, Industry Edition
Short presentations by your fellow CS students about
internship experiences in industry. CS Colloquium
credit awarded for attendance.

2

Topics

Avoiding errors
Higher order functions

3

Your to-dos

1. Lab 2, due Sunday 9/24 by 10pm (partner lab).
2. Read Introduction to the Lambda Calculus, Part

1 and Grammars and Parse Trees by next
Thursday, 9/28.

3. Sign up for What I Did Last Summer

4

Activity

5 One approach is to create a variable that you can test in a pattern match.

let rec get_nth xs n =

 let gt = n > List.length xs

 match xs, n, gt with

 | _,_,true -> failwith “error”

 | [],_,_ -> failwith “error” 
 | y::ys,1,_ -> y 
 | y::ys,_,_ -> get_nth ys (n - 1)

Avoiding errors

Exploding programs is no fun.
Get in the habit of validating input.

6 I’m going to discuss two approaches.

Avoiding errors using patterns

7

• F# has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =
| None
| Some of 'a

8

let divide quot div = quot/div

A function that throws an exception
9 Here’s a toy example of a function that can fail (with an exception).

Although the failure mode of this function may seem obvious for this
example, in general, it is often hard to see which inputs may cause a
function to fail, especially if you did not write the function.

> divide 6 7;;

val it : int = 0

> divide 6 0;;

System.DivideByZeroException: Attempted to
divide by zero.
…
Stopped due to error

A function that throws an exception
10 In case it wasn’t clear, here’s the function failing. Note that 6/7 = 0

because we’re talking about integer division.

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (quot/div)

Avoiding errors with patterns
11 Instead, we can rewrite our function to communicate to a potential user

that it might fail. In other words, it is not defined across its entire range.
To do that, we use the parametric (i.e., generic) option type. When it fails,
it returns None of something. When it succeeds, it returns Some of int.

> divide 6 7;;

val it : int option = Some 0

> divide 6 0;;

val it : int option = None

>

Avoiding errors with patterns
12 Here is the same scenario as before. Observe that there is no runtime

exception.

• Why option?

• option is a data type; 

not handling errors is a static type error!

• In other words, the user of our divide function

must handle the error.

Option type
13 So why is this a good idea? In short, it forces the user of the function to

acknowledge the failure mode of the program, and to write program logic
to handle it. Failing to handle the error is a type error, which means that
their program will not compile. Now, we cannot guarantee that the user
does the “right thing” with the failure, but at least we can guarantee that
they must do something. Moreover, we make the user’s life easier
because they do not need to understand the domain of the function
deeply— they just need to think of a corrective action.

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (quot/div)

[<EntryPoint>]
let main args =
 let quot = int args[0]
 let divisor = int args[1]
 let result = divide quot divisor
 match result with
 | Some z -> printfn "Oh good: %d” z
 | None -> printfn "Bad numbers!”
 0

Option type
14 Here is a complete example, with a main method. Try it yourself!

Exceptions

15 Of course, F# also has exceptions.

let divide quot div = quot/div

We could have used exception, right?
16 This function naturally uses exceptions, since integer division by zero is

undefined and throws a floating point exception.

let divide quot div = quot/div

[<EntryPoint>]
let main args =
 let quot = int args[0]
 let divisor = int args[1]
 try
 let dividend = divide quot divisor
 printfn "%d" dividend
 0
 with
 | :? System.DivideByZeroException ->
 printfn "No way, dude!"
 1

Exception handling 17 Here’s a complete example. Observe that the burden is shifted entirely to
the user of the divide function. Also, F# does not force users to handle
exceptions, so if they do not actively anticipate errors, they are likely to
miss the fact that they need to do this. Still, it is a simple mechanism and
can work reliably when the domain is communicated clearly to the user of
the function (e.g., through comments).

• When do I use each one?

‣ option prevents errors at compile time.

‣ Exceptions prevent errors at runtime.

Option vs Exceptions
18 Why might you want to use option vs exceptions? The question comes

down to when you want errors in program logic handled. Option ensures
that logic errors are handled at compile time. Exception handlers ensure
that logic errors are handled at runtime. I have a personal preference for
the former because I think coding is hard and that we need all the help
that we can get.

let rec get_nth xs n =
 match xs, n with
 | _, _ when n > List.length xs -> None
 | _, _ when n < 1 -> None
 | [], _ -> None
 | y::ys, 1 -> Some y
 | y::ys, _ -> get_nth ys (n - 1)

Activity solution using option and when 19 BTW, we can use Option and “when” syntax in our patterns to make our
solution really pretty.

Higher order functions

20 HOFs are one of the most important features of functional languages, and
its something that makes them stand apart from conventional languages.
HOFs give you great flexibility in how you design programs.

Three amazing functional concepts

•First-class functions

•Higher-order functions

•map

•fold

21 If you learn only three ideas about functional programming this semester, I
hope it is these three ideas. First-class functions, map, and fold. Nearly
any program that uses loops can instead be expressed using these three
ideas.

a function

+1

3

4

22 I want you to think of functions simply, in their mathematical sense. A
function is a machine that takes an input and returns an output. Any other
kind of “function” is not a function in a true sense. For example, a
machine that does something off on the side is not a true function; it is
more properly called a “procedure.”

“first class” function

Function definitions are values in a

functional programming language

23 A first class function means that function definitions themselves are
values. You can use them anywhere you can use ordinary values. You
can assign them to variables. You can pass them as arguments in
function calls. Very few programming languages allow you to do this.

a function

+1

3

4

24 Returning to our simple notion of a function…

a function
25 … this is an example of a higher-order function. Observe that it depends

on the existence of first class functions. A higher order function takes a
function definition as an argument.

map

1

3

2

4

5

1

3

2

4

5

Like a for loop, but without mutable variables

List.map (fun x -> x + 1) [1;2;3;4;5]

Intuition:

26 An example is the map function. Map takes a function as an argument,
and it applies it to every element given to it. You can accomplish the
same thing with a loop, but observe that this is actually simpler. The
“body” of this “loop” only says what to do when given a single element. It
does not worry about “how” to access the element from the list, or where
to store it when it is done. List.map returns a new list, and assuming that
the given function is O(1), List.map takes O(n) time, so it is efficient.

map

1

3

2

4

5

2

4

3

5

6

Like a for loop, but without mutable variables

[1;2;3;4;5] |> List.map (fun x -> x + 1)

Intuition:

27 You can also rewrite this function using the forward pipe operator so that
the data comes first. I personally prefer this style, but whichever you
choose is up to you.

map

1

3

2

4

5

1

3

2

4

5

Key observation:

Intuition:

n things in, n things out

28 An important fact about map is that if you give it n things, you get n things
back. Observe that for and while loops give no such guarantees, even
when that’s what you want them to do.

map

map

[1;2;3;4;5]
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

[2;3;4;5;6]

29 How does it work? List.map will apply the given machine (here a +1
machine) to every element of the input list, yielding a new output list.

map

Intuition:

30 The intuition behind map is that is behaves like the worker in an assembly
line. That one workers does the same thing over and over. For example,
the first person in the line may just put the knobs on the radios. The next
person may attach the power cords. And so on. Each person is a
“mapper.”

map
List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

31 Again, observe we’re just adding +1 to each element.

map

[2;8;22;4]

|> List.map (fun x -> x + 1)

|> List.map float

|> List.map (fun x -> x / 3.3)

|> List.sort

[0.9090909091; 1.515151515; 2.727272727;

6.96969697]

32 You can make an “assembly line” by chaining mappers together. Forward
pipe makes these chains easy to read because the first operations come
first. For example, x + 1 is performed first, then the conversion to float,
then division by 3.3, etc.

fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

33 Fold is another important idea. It can be used for any problem that
exhibits structural recursion. Structural recursion happens any time we
need to solve a problem over a recursive data structure. E.g., lists and
trees.

fold

Intuition:

Key observation:
n things in, 1 thing out

34 The intuition is like a person folding a towel. Unlike mapping, fold takes in
n things and returns 1 thing. Importantly, it is accumulating those n things
into a single thing. The idea of an accumulator is central to folding.

fold

1

3

2

4

5

1

3

2

4

5

List.fold (fun acc x -> acc+x) 0 [1;2;3;4;5]

Intuition:

+

3 +

6 +

10+

0 + 1

35 For example, suppose we want to sum some numbers. We can define
this using fold. Fold takes a “folder” which is a function that says how to
accumulate, a default accumulator value, and an input list. For each
element, fold runs the given function on the latest value of the
accumulator with that element. For example, in the beginning, the
accumulator is zero and we add it to the first element of the list, one. The
result is the new value of the accumulator. So the second element, two, is
added to one. Three is new value of the accumulator, and so on.

fold

1

3

2

4

5

1

3

2

4

5

[1;2;3;4;5] |> List.fold (fun acc x -> acc+x) 0

Intuition:

+

3 +

6 +

10+

0 + 1

36 Again, you can rewrite this using pipe forward to move the data to the
front.

fold left
List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4]

acc = 0+1, [2;3;4]

acc = 1+2, [3;4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

37 Another view of the same computation.

what does this return?

List.fold

 (fun acc x -> acc + string x)

 ""

 (Seq.toList "williams")

38 Try this at home. What does it return. Why?

Recap & Next Class

Today:

Next class:
PL foundations

Option vs exceptions
More pattern matching

Higher order functions

39

