
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: ML, part 2

1

Topics

Algebraic data types

Option type

Pattern matching

2

Your to-dos

1. Read Advanced F# by Thursday.
2. Lab 2, due Sunday 9/24 by 10pm (partner lab).

3

Announcements

•CS Colloquium this Friday, Sept 22 @ 2:35pm in
Wege Auditorium (TCL 123)

Your classmates
What I Did Last Summer, Industry Edition
Short presentations by your fellow CS students about
internship experiences in industry. CS Colloquium
credit awarded for attendance.

4

Free your mind

5

Freeing your mind is difficult 6 Remember how I asked you to “be like Neo” and free your mind? Freeing
your mind is difficult. If you found the last assignment to be a bit of a
challenge, that’s OK. Even Neo tanked it the first time. But keep at it.

Pattern Matching

7 Here’s the first feature that is likely VERY different from something you’ve
seen before. Once you get used to this feature, you will miss it in other
languages. In fact, some non-functional languages have started to
incorporate this feature, like TypeScript.

Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

8 Suppose somebody asks you to write a program in F# to multiply together
all the elements of a list. Since we don’t have loops, we will need to use
recursion. Remember how recursion works: we need a base case and a
recursive case. The base case is to return 1 so that our multiplication
problem is grounded. Then we multiple each element one at a time in the
recursive case. To do so, we need to remove the head of the list and
multiply it by the product of the rest of the list. However, there is a much
cleaner way to express this problem using patterns. I’ll explain the
difference in a minute, but first, just appreciate how much nicer this looks.

A pattern is built from

•values,

• (de)constructors,

•and variables

Tests whether values match “pattern”

If yes, values bound to variables in pattern

Pattern matching
9 A pattern is made from values, deconstructors, and variables. A

deconstructor is like a constructor, but the inverse. When the value of a
variable matches a pattern, we can deconstruct its values and execute a
line of code.

Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

10 The pattern in the code below has two cases. Either the list is empty or is is not. If it is empty, return one. If it is not, deconstruct the list
in a head and a tail, then multiply the head by the product of the tail.

Activity: Pattern matching on integers

Write a function listOfInts that returns a list
of integers from zero to n.

Oops! This returns the list backward.

Let’s flip it around.

let rec listOfInts n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)

11 Spend a minute writing this function. If you are at home, cover up the solution until you are ready.

This solution is almost correct. The list is backward.

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)
 li n |> List.rev

… by defining a function inside our function.

12 We’ll use pipe forward and the built-in List.rev function.

Sidebar: breakpoint debugging

13 Debugging programs is a pain. If you’ve never used a breakpoint debugger, now is the time to learn.

• Remember, a list is one of two things:
– []
– <first elem> :: <rest of elems>
– E.g., [1; 2; 3] = 1::[2,3] = 1::2::[3]
= 1::2::3::[]

• Can define function by cases…

Pattern matching on lists

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

14

• Patterns can be used in place of variables
• Most basic pattern form
– let <pattern> = <exp>

• Examples
– let x = 3
– let tuple = ("moo", “cow")
– let (x,y) = tuple
– let myList = [1; 2; 3]
– let w::rest = myList
– let v::_ = myList

Patterns in declarations
15

Algebraic Data Types*

*not to be confused with Abstract Data Types!

16

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

17

• Invented by Rod Burstall at
University of Edinburgh in ‘70s.

• Part of the HOPE programming
language.

• Not useful without pattern matching.
• Like peanut butter and chocolate,

they are “better together.”

Algebraic Data Types
18

19 In case you’ve never heard the “better together” reference, he’s some pop
culture trivia.

A “move” function in a game

north

south

eastwest

20 Suppose we want to model moving a character in one of four directions.

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

A “move” function in a game (Java)

public … move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

21 We might do it like this in Java. It works, but it sure is a lot of typing!

type Direction =
 North | South | East | West;

let move coords dir =
 match coords,dir with
 |(x,y),North -> (x,y - 1)
 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (Java)
Discriminated Union (sum type)

22 We can do it much more concisely in F# using patterns. Importantly, F# will tell you when you’ve missed a case.

• Pattern match to extract parameters

type Shape =
 | Rectangle of float * float
 | Circle of float

let s = Rectangle(1.0,4.0)
match s with
| Rectangle(w,h) -> …
| Circle(r) -> …

Parameters
23 So, stepping back a little, an algebraic data type is a way of defining a piece of data by cases. The key thing to remember is that the type

here is Shape. However, a shape can have cases. The names of those cases are constructors for each kind of Shape. When we match
a Shape in a pattern, we can deconstruct each case into its component values.

• Names are really only useful for initialization, though.

let s = Rectangle(height = 1.0, width = 4.0)

Named parameters

type Shape =
 | Rectangle of width: float * height: float
 | Circle of radius: float

24 You can also name the pieces of each case, which helps with initialization.

type MyList<'a> =
 | Empty
 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic
25 You can also make an ADT recursive, and you can also make it generic. Recall that a linked list is both recursive and generic.

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =
| None
| Some of 'a

26 Here’s another nice way to use patterns: avoiding errors. Unlike throwing
exceptions in Java (F# also has exceptions, BTW), F# has a convenience,
type safe method for handling errors that can be used to guarantee that
the user of a function handles the error condition.

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (float quot/float div)

Avoiding errors with patterns
27 For example.

> divide 6 7;;

val it : float option = Some 0.8571428571

> divide 6 0;;

val it : float option = None

>

Avoiding errors with patterns
28

• Why option?

• option is a data type; 

not handling errors is a static type error!

option type
29

Recap & Next Class

Today:

Next class:
Higher order functions

Algebraic data types
Option type

Pattern matching

30

