
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 3: ML

Topics

ML family of languages

F#

Your to-dos

1. Lab 1, due Sunday 9/17 (partner lab)
2. Read Advanced F# (for Monday)

Announcements
•CS Colloquium tomorrow @ 2:35pm in Wege
Auditorium (TCL 123)

David Mimno (Cornell)
The data in data science: measuring the impact
of data curation on large language model
pretraining
Large language models like BERT and ChatGPT are fundamentally a
reflection of the data used to train them. Putting together
millions of documents from diverse sources requires innumerable
choices. But because of the time and expense of the initial,
general-purpose “pretraining” phase of model training, many of
these choices are made heuristically without any systematic
evidence-based justification. We train models to measure the
effects of three common curation decisions: document age,
quality and toxicity filtering, and data sources. We find that
these choices have significant, noticeable effects that cannot
be fully overcome by additional training.

Announcements

•TA Hours start tonight (don’t let them get lonely)

Is this a program?

Recall the prompt I gave you before you did this assignment. It asked you
to think about what makes a program a program. Is this a program?

Out:

-
Here are all of the renderings of those instructions that you produced.
They’re all similar but definitely not identical.

The one on the right is a “certified” Sol LeWitt.

So is our specification a program? Why or why not?

Activity

Today we are going to talk about a family of programming languages,
called “ML.” Note that this is a different “ML” than the term that refers to
machine learning.

ML

Today we are going to talk about a family of programming languages,
called “ML.” Note that this is a different “ML” than the term that refers to
machine learning.

“Free your mind”
Before we start, I want you to free your mind. Learning ML requires you to
do some mind bending things sometimes. Be prepared not to get it right
the first time. Be like Neo.

1960

1970

1980

1990

2000

2010

LISP
1950

ML

Standard ML Caml
OCaml

Miranda
Haskell

F#

Java

C#

ML
Originally, ML was just a language. It was strongly influenced by LISP,
which we will also touch on this semester. But many others were inspired
by ML, and created new languages that added many new features. We
will primarily spend our time learning F#, which is most directly influenced
by Haskell, OCaml, and C#. I really love F#, and I hope you enjoy it too.

ML
• Dana Scott

• Logic of Computable Functions

• Can we automate proofs?

• Yes. Theorem proving is

essentially a “search problem”!

• But proof search is “hard.” 

Many problems are NP-

Complete.

• Works “in practice” with the

right “tactics”

So where did ML come from? It was not born in a vacuum.

ML
• Robin Milner

• How to program tactics?

• A “meta language” is needed

• ML is born (1973)

• First impression upon

encountering a computer:

"Programming was not a very

beautiful thing. I resolved I

would never go near a

computer in my life."

ML stands for “meta language.”

F#

• Don Syme

• ML is “more fun” than Java or C#.

• Can we use ML instead?

• F# is born (2010).

F# is a modern reinvention of ML for the .NET runtime produced by
Microsoft.

Logical operators

Logical operators

operation syntax

and &&

not not

equals =

not equals <>

inequalities <, >, <=, >=

unit

Because in F# everything is an expression, we need a way to express the
idea that a function may return nothing. For that, we have a special value
called “unit.”

unit datatype

public static void main(String[] args) { … }

let main args = …

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) = …

Remember: every expression must return a value.
A function can’t return nothing.

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) : unit = …

Therefore, “nothing” is a thing… called unit.

unit datatype
$

How does one obtain a value of unit?

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5

Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

 unit;;

 ^^^^

stdin(1,1): error FS0039: The value or constructor 'unit' is
not defined.

>
val it : unit = ()

>

$ dotnet fsi

> unit;;

> ();;

()

val it : unit = ()

>

> ignore (foo());;

val it : int = 2

>

val foo : unit -> int

>

You can also ignore…
> let foo() = 2;;
>

> foo();;

val it : unit = ()

>

> foo() |> ignore;;

“forward pipe” operator
<expr> |> <expr>

foo() |> ignore

Another function called “ignore” allows you to “throw away” a value
returned by a function. It replaces that value with unit. I am also showing
my favorite F# operator here, which is called “forward pipe.” If you’ve
ever used pipes in the unix shell, forward pipe should be familiar.

By the way…

let main(args: string[]) : unit = …

I used this example before, but…

By the way…

let main(args: string[]) : int = …

… to be more precise, F# requires that main methods return int.

Primitives

† actually defined by the CLR

Primitives

bool

byte

int

single

double

char

unit

sbyte

int16

uint16

uint

int64

uint64

nativeint

unativeint

decimal

Recap & Next Class

Today:

Next class:
More F#

History of ML
F#

