expression AST derivation rule Q Q 2 f z Q Х Ζ f ß f Х $(\lambda f.\lambda x.f(fx))(\lambda z.(+xz))2$ given Q Q 2 f Ζ a Q Х Z f Q f а $(\lambda f.\lambda a.f(fa))(\lambda z.(+xz))2$ α reduce a for x to avoid "capturing" the free x 0 Ø Ø Ζ а Х Ζ Ζ $(\lambda a.(\lambda z.(+xz))((\lambda z.(+xz))a))2$ Х Ζ β reduce $(\lambda z.(+xz))$ for f

In this example, I always choose the *normal order* reduction. Normal order is always "outermost leftmost" in the AST. The **highlight** identifies the parts of the AST reduced in the next step.

expression	AST	derivation rule
	$ \begin{array}{c} $	
$((\lambda z.(+xz))((\lambda z.(+xz))2))$		β reduce 2 for a
$\frac{((\lambda z.(+xz))((\lambda z.(+xz))2))}{(\lambda z.(+xz))((\lambda z.(+xz))2)}$	Same tree.	eliminate parens
	$\begin{array}{c} + \\ / \\ x & 0 \\ / \\ \lambda & 2 \\ / \\ z & + \\ / \\ x & z \end{array}$	
$\frac{((+x((\lambda z.(+xz))2)))}{(+x((\lambda z.(+xz))2))}$		β reduce $((\lambda z.(+xz))2)$ for z
$(+x((\lambda z.(+xz))2))$	Same tree.	Eliminate parens.
(+(((+2)))))	$\begin{array}{c} & + \\ & / \\ & \times & + \\ & / \\ & \times & 2 \end{array}$	
$\frac{(+x(((+x2))))}{(+x(+x2))}$		β reduce 2 for z
(+x(+x2))	Same tree.	Eliminate parens. Done.