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Science is what we understand well enough to explain to a computer;
art is everything else.

Donald Knuth, Things a Computer Scientist Rarely Talks About
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Preface

Figure 1: Not a typical programmer.

TO ASK whether a given programming language is suitable for a given
task is logical, and youmight think that this is what this course is about.
We will certainly discuss that topic. But the practice of programming
is as much about the aesthetic and emotional experience as it is about
logic. The best programmers are not emotionless, Spock-like beings
(Fig. 1). They are keenly aware of the emotional connection to their
work. The best languages aren’t just useful, they’re pleasant to use.

Figure 2: The Art of Computer Program-
ming, one of the most important works
of computer science, has the word art in
the title. Is it art or science? Maybe it’s
both?

This argument may seem strange to you. Isn’t a computer the very
embodiment of cold, hard rationality? I argue that it is not, and that
thinking about it that way will prevent you from becoming a great pro-
grammer. I’m not the only one who thinks this way (Fig. 2).

In this course, we will talk about your thoughts and your feelings
about programming. As we progress, I will point out the things that I
findmysterious1 andwonderful.2 Seeing code as something that can be

1 Y = λf.(λx.f(x x))(λx.f(x x))
2 Y is, in a sense, the meaning of recur-
sion.

“beautiful” changes your relationship with coding. It’s not mechanical
drudgery—it’s an art!

We will also talk about the key concept that underlies every good
programming language: its formal model. A formal model describes the
rules of the language, and is often mathematical in nature. A good for-
mal model is a clarifying concept. Once you understand a language’s
model, you will know when it is appropriate to use one language ver-
sus another.

Beforewe start, take amoment and recall some of your programming
experiences. Remember the feelings that you had. Now ask youself: did
it feel good to program a computer? Should it?





A Brief Introduction to F#

This tutorial gets you started learning the F# programming language. F#
is a modern version of the highly influential ML programming language.
We focus at first on the F# programming environment and basic syntax.
In subsequent reading, we will dive deeper into F#.
F# strikes many programmers new to the language as foreign. The lan-
guage requires that you think about programming in new ways. How-
ever, even if you never program in F# again, the experience will likely
influence your programming in the future. After I discovered F#, I won-
dered why conventional languages like Java and C++ had to be so com-
plicated. The short answer is: they don’t have to be!
If you have F# installed on your computer, you should be able to follow
along by starting the F# interpreter3 and then by typing expressions into 3 Type dotnet fsi on the command

line. To quit, type #quit;;. You will
sometimes hear me refer to this inter-
preter as a “REPL,” which stands for
“read-eval-print loop.”

your console. You are strongly encouraged to actively follow along by
typing in and running the code examples in this book.

Let’s look at our favorite starter program written in F#.

printfn "Hello world!\n"

That is the entire program. Refreshing, isn’t it?

What is F#?

F# is a functional programming language. A functional programming
language differs in form than a conventional programming language
like C4 or Java5. Even if you decide that functional programming is not 4 C is an imperative programming lan-

guage, meaning that programmers are
expected to spell out every step of a pro-
gram, including how values are stored
in memory.
5 Java is an object-oriented programming
language. Object-oriented languages
frame memory management and com-
mon software designs in terms of
“objects,” and are also usually imper-
ative. Python and Java are imperative
and object-oriented.

for you, exposure to functional programming ideas will change the way
you think about coding for the better.

Functional programming encourages expressions over statements, im-
mutable instead ofmutable variables, and pure, first-class functions instead
of side-effecting procedures. F# is also strongly typed unlike C, which is
weakly typed, and Python, which is dynamically typed. These differences
contrast sharply with those encountered in languages like C, Java, or
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Python. The end result is that functional programs readmore likemath-
ematical statements than a sequence of steps. Let’s briefly touch on each
of these concepts.

Immutable variables

In a language like Python or C, a variable can be declared and written
to many times. E.g.,

x = 2
x += 1 # the value of x is now 3
x += 1 # the value of x is now 4
x += 1 # the value of x is now 5

In a functional programming language, a variable can only be assigned
once, when it is declared.

let x = 2
x += 1 // can't do this in F#; will not compile

Youmight bewondering how on earth you “update” data. It’s done like
this:

let x = 2
let y = x + 1

where x and y are not the same variable.6 6 In other words, variables are never
updated!

Variables in F# are immutable, meaning that once they are declared,
their values will never change. If you’re like me, this idea probably has
left you scratching your head. Good. The value of this model of pro-
gramming will become apparent to you in time.

Expressions

In a language like Python or C, a line of code can either return a value
or not. For example, in Python:

print("hi") # returns nothing; this is a statement
x + 1 # returns the value 3; this is an expression

In a functional language, all language constructs are expressions.

let x = 2 // returns a binding of the value 2 to the variable 'x'
x + 1 // returns the value 3

When a line of code returns nothing, we call it a statement. Since it
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is pointless to have a line of code that does nothing, a statement does
something by changing the state of the computer. Changing the state of the
computer independently of a return value is called a side effect. Side ef-
fects are either banned in functional languages (e.g., pure Lisp, Haskell,
Excel) or strongly discouraged (e.g., Standard ML, F#).

Pure, first-class functions

A pure function is a function that has no side effects. In F#, we usually
write pure functions.

In C, one can write the following:

int i = 0;

void increment() {
i++;

}
increment(); // i has the value 1

Observe that the increment function takes no arguments and returns
no values and yet, it does something useful by altering7 the variable i. 7 The technical term is mutating.
One is not permitted towrite code like this in a functional programming
language because variables are immutable and functions are pure. In-
stead, one might write

let increment n = n + 1
let i = 0
let i' = increment i // i has the value 0; i' has the value 1

where i and i' are different variables, and where increment is a func-
tion definition for a function called increment that takes a single argu-
ment, n. Function calls look a little strange in F#, so you should expect
that will take some time before you are adept at recognizing their form.
It often helps to rewrite a program to use explicit parentheses and type
annotations:

let increment(n: int) : int = n + 1
let i: int = 0
let i': int = increment(i)

This is also a valid F# program—in fact, it’s exactly the sameprogram—
and if you find yourself strugglingwith syntax, I encourage you towrite
in this style instead.

Function definitions in F# are also first class values. What does that
mean? Among other things, any first class value can always be assigned
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to a variable. So yes, you can assign a function definition to a variable.8 8 Most students struggle with this
concept, but it is very important. If
you’re struggling to understand this
idea, this is a great topic of discussion
for class or help hours.

For instance,

let increment(n: int) : int = n + 1
let addone = increment
addone(3) // returns 4

The type of the variable addone is a function definition (specifically,
a function that takes an int as input and returns an int, or as we say
for short “a function from int to int”), and since it’s a function we can
call it just as we would call increment.

Since values and variables can be passed into functions, one can pass
variables of “function type” into functions as well:

let increment(n: int) : int = n + 1
let doer_thinger(f: int -> int, n: int) : int = f(n)
doer_thinger(increment, 3) // returns 4

And, just for fun, let’s get rid of the unnecessary syntax so you can
see how simple this program can look:

let increment n = n + 1
let doer_thinger f n = f n
doer_thinger increment 3 // returns 4

Strong types

F# is a strongly-typed programming language. A strongly-typed lan-
guage is one that enforces data types strictly and consistently. That
means that the following kinds of programs are not admissible in F#.
For example, the Python program,

x = 1
x = "hi"

or the C program,

int x = -3;
unsigned y = x;

Even with all the warnings enabled, a C compiler (like clang), won’t
flinch: no errors or warnings are printed for the above program. Nev-
ertheless, it doesn’t make sense to disregard the fact that an int is not
an unsigned int, because assigning -3 to y dramatically changes the
meaning of the value. y is very much not -3 anymore9. 9 If you know some C, try running a

little experiment to see what happens.Both of the above programswould be considered incorrect in F#, since
both contain type errors. Neither programwill compile. To convert from
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an integer to an unsigned integer, wemust explicitly convert them in F#:

let x: int = -3
let y: uint32 = uint32 x

Strong types help you avoid easy-to-make but costly mistakes.

Other features

F#hasmanyother features, such as garbage collection (like Java), lambda
expressions, pattern matching, type inference, concurrency primitives,
a large,mature standard library, object-orientation, inheritance, andmany
other features. Don’t worry if you don’t know what these words mean
now. We will discuss their meanings throughout the remainder of the
semester.

Microsoft .NET

F# is a part of an ecosystem of languages and tools developed by Mi-
crosoft called .NET (pronounced “dot net”). Programs written in .NET
are almost entirely interoperable, meaning that different parts of the
same program can be written in different languages. For instance, I
routinely write software that makes use of modules written C#, F#, and
Visual Basic combined into a single program.

.NET is also portable, meaning that it can run on many computer
platforms. Unless you specifically seek to write platform-specific code,
.NET code can be run anywhere the .NET Common Language Runtime
(CLR) is available. This language architecture is similar to, and heav-
ily inspired by, the technology behind the Java Virtual Machine (JVM).
The .NET Core CLR is available on Windows, the macOS, and Linux.
Additional platforms (like Android, iOS, and FreeBSD) are supported
by the open source Mono project.

We will be using the .NET Core framework on Linux for this class. If
you would like to install .NET Core on your own machine, you may do
so by downloading the installer10. 10 https://www.microsoft.com/net/

download

Modularity

One feature that we will address right away is F#’s strong support for
modularity. Modules are a way of organizing code so that similarly
named functions and variables in different parts of code do not conflict.
In C, libraries are imported by the C preprocessor which performs the

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
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moral equivalent of pasting code from included libraries into a single
file. As a result, it is easy to accidentally give two different function def-
initions the same name, a so-called name conflict. Name conflicts are an
annoying and commonplace occurence in C. In F# and other .NET lan-
guages, name conflicts are impossible, because names are scoped, mean-
ing that they only havemeaning within certain boundaries. When a du-
plicate name appears, .NET signals that something is wrong by issuing
a compilation error.11 11 Compilation errors are a good thing.

When they occur, the compiler is telling
you that you definitely made a logic
error. Learn to be friends with compiler
errors.

F# has a variety of constructs available to scope names: solutions,
projects, namespaces, and modules. For now, we will focus on projects.

A project is a unit of organization defined by .NET. A project contains
a collection of source code files, all in the same language. A project is
either a library, meaning that it must be called by another project, or an
application, meaning that it has an entry point and can run by itself.

Creating the HelloWorld project

In order to provide some structure for our hello world program, let’s
generate an application project. Having an application packaged in this
way makes it self-contained and easy to manage during the develop-
ment process.

We create new F# projects using the dotnet command on the UNIX
command line. Because dotnet creates a project in the existing direc-
tory, you should first create a directory for your project.

$ mkdir helloworld

Now cd into the directory and create the project.

$ cd helloworld
$ dotnet new console -lang "F#"

Bydefault, the above commandwill generate aHelloWorld program.

// Learn more about F# at http://fsharp.org

open System

[<EntryPoint>]
let main argv =

printfn "Hello World from F#!"
0 // return an integer exit code

There’s a little more boilerplate here than we saw when using the
dotnet fsi REPL, and it is mostly unnecessary. But we will keep it
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around because it makes working with arguments a little easier.
F# is a whitespace sensitive language, like Python. Whitespace sensi-

tivity means that the scope of a function definition is determined by in-
dentation rules instead of explicit delimeters like curly braces. Thus the
last line in the above main function is the expression 0. The last line of a
function definition denotes the function’s return value, so this function
returns 012. 12 When a program’s main function

returns 0 it informs the operating
system that everything went A-OK. A
non-zero return value indicates a failure.

One last thing. Since every language construct in F# is an expression,
printfn is an expression. However, it falls into a special class of side-
effecting expressions. Input and output are inherently side-effecting, so
any functional language that does not allow at least some side effects is
seriously constrained in terms of expressiveness. Pure functional lan-
guages like Haskell have a clever but somewhat complicated scheme
for dealing with side effects. For example, the first “hello world” pro-
gram in the “easy-to-read”Haskell programming book onmybookshelf
appears on page 154! Pure functional languages are not easy to learn
without prior exposure to some of their ideas. I chose F# for this class
specifically because it is not pure; however, if you are interested, your
experience in this class will make it easy to learn Haskell or other pure
languages on your own.
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Compiling and running your project

Compile your project with:

$ dotnet build

You may also just run the project, and if it needs to be built, dotnet
will build it for you before running it.

$ dotnet run

I personally prefer to run the build command separately because the
run command hides compiler output. I like to see compiler output since
itwill informmewhen it finds problemswithmyprogram. Unlike other
languages you may have used, F#’s compiler generally produces very
good error messages.

Code editors

You are welcome to use whatever code editor you wish in this class.
Two in particular stand out for F#, however: Visual Studio Code and
emacs. Both are installed on our lab machines. Note, however, that we
will strictly manage our projects using the dotnet command line tool.

Visual Studio Code

Visual Studio Codeworks out of the boxwith F#, but an extension called
Ionide13 adds additional features like syntax highlighting and tooltips 13 http://ionide.io/

to your editor. To install Ionide, follow this tutorial on installing exten-
sions14. 14 https://code.visualstudio.com/

docs/editor/extension-galleryNote: Ionide comeswith a variety of build tools such as FAKE, Forge,
Paket, and project scaffolds. Please do not use these tools for this class
as they do not interoperate well with our class environment. Instead,
please use the dotnet command line tool to compile and run your tool
as discussed earler.

emacs

If you prefer emacs, you can add the fsharp-mode which adds syntax
highlighting, tooltips, and a variety of other nice features. I personally
prefer this environment, but I understand that emacs is not everybody’s
cup of tea.

http://ionide.io/
http://ionide.io/
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
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If using emacs on a lab machine, try pasting the following into
̃/.local_emacs:15 15 On your personal machine, use

̃/.emacs instead.
(require 'package)
(add-to-list
'package-archives
'("melpa" . "http://melpa.org/packages/"))

(unless package-archive-contents (package-refresh-contents))
(package-initialize)

(unless (package-installed-p 'fsharp-mode)
(package-install 'fsharp-mode))

(require 'fsharp-mode)

The abovewill install bothMELPA,which is an online package repos-
itory for emacs, and the fsharp-mode package. Note that MELPA has
many other modes you can install if you like what you see. One down-
side to MELPA is that it adds a few seconds of startup time to emacs,
but in my opinion, the delay is well worth the wait.

The next time you start emacs with F# code, you will see the new
mode in action.





A Slightly Longer Introduction to F#

This tutorial goes deeper into the F# language. As before, you are strongly
encouraged to follow along on your computer.

Let’s look at a very simple F# program in source code form.

[<EntryPoint>]
let main argv =
printfn "Hello, %s!" argv[0]
0

Type this program into an editor and save itwith the name helloworld.fs.
I recommend typing the program instead of copying-and-pasting it be-
cause retyping it will force you to notice important details about the
program.

Hopefully it’s not too much of a stretch to figure out what this pro-
gram does! We will look at this program line-by-line to understand
what its parts are, but first, let’s understand how to run this program.

The F# Compiler

As with any other programming language, your computer cannot un-
derstand an F# program in source code form. It must be translated into
another form. Unlike a language like C, however, we do not translate
F# directly into an executable binary. Instead, the F# compiler, called
fsharpc, converts F# source code into an architecture independent form.
Architecture independence means that the resulting compiled program
can be run on any computer: a personal computer, a cellphone, a super-
computer, a watch, or even an embedded computer (like the kind in
“smart lightbulbs”).

Architecture independence is achieved by building the language on
top of a virtual machine16. A virtual machine provides an abstraction 16 Specifically, the language uses a

process virtual machine. Unlike a fully
virtual machine, which is intended to
mimic an actual processor along with
all its quirks, a process virtual machine
is even simpler since it does not need to
accurately emulate computer hardware.

that hides many of the quirks present in real computers.
Building a language on top of a virtual machine greatly simplifies

the process of converting software to run on other computer systems.
Altering a program so that it will run on another computer system is
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called porting. In the past, programmers were responsible for altering
programs to run on other computer systems themselves. With the vir-
tual machine approach, the burden of producing portable software is
shifted to the language designer. Language designers typically have a
much better understanding of code portability concerns than a typical
programmer.

Since you are likely more familiar with the Java programming lan-
guage than with F#, it’s worth knowing that Java uses the same ap-
proach as F#: javac produces Java byte code, which is then interpreted
by the Java Virtual Machine (JVM). Since each computer platform has
its own java interpreter, that compiled program can be written once
and run anywhere. “Write once, run anywhere” was the marketing slo-
gan used by Sun Microsystems to sell the Java programming language
in the mid 1990’s.17 17 It should be noted that neither Mi-

crosoft nor Sun Microsystems invented
the idea of portable bytecode. That
honor appears to go to Martin Richards,
who came up with O-code to make it
easier to port the BCPL language in the
mid-1960’s.

Here is a (snippet of) fsharpc’s translation of our hello world pro-
gram into VM byte code, which is the virtual machine’s native language.
The byte code shown below is in a dialect called the Common Inter-
mediate Language (CIL), and runs on Microsoft’s VM, the Common
Language Runtime (CLR).

0000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00
0000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
0000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000030 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00
0000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68
0000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f
0000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20
0000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00
0000080 50 45 00 00 4c 01 03 00 da 06 ca 5b 00 00 00 00
0000090 00 00 00 00 e0 00 0e 01 0b 01 08 00 00 08 00 00
...

Note that you do not need to know CIL or any other assembly lan-
guage in this class. I’m just showing this to you to give you some per-
spective. If you do have some familiarity with x86 or ARM machine-
level programming, CIL byte code might look similar. However, the
format is quite different. I show the same information below converted
into a human-readable form using CIL’s instruction mnemonics (i.e.,
“assembly code”). If you know a little assembly already, you might no-
tice that the CIL’s mnemonics are much more expressive.18 18 We will talk about the expressiveness

of languages throughout the semester.
For now, think of the distinction as like
the difference between a simple story
and great literature.

.class public abstract sealed auto ansi
Program

extends [mscorlib]System.Object
{

.custom instance void [FSharp.Core]Microsoft.FSharp.Core.
CompilationMappingAttribute::.ctor(valuetype [FSharp.Core]
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Microsoft.FSharp.Core.SourceConstructFlags)
= (01 00 07 00 00 00 00 00 ) // ........
// int32(7) // 0x00000007

.method public static int32
main(

string[] argv
) cil managed

{
.entrypoint
.custom instance void [FSharp.Core]Microsoft.FSharp.Core.

EntryPointAttribute::.ctor()
= (01 00 00 00 )

.maxstack 4

.locals init (
[0] class [FSharp.Core]Microsoft.FSharp.Core.FSharpFunc`2<

string, class [FSharp.Core]Microsoft.FSharp.Core.Unit>
V_0,

[1] string V_1
)

// [3 5 - 3 25]
IL_0000: ldstr "Hello, %s!"
IL_0005: newobj instance void class [FSharp.Core]

Microsoft.FSharp.Core.PrintfFormat `5<class [FSharp.Core]
Microsoft.FSharp.Core.FSharpFunc`2<string, class [FSharp
.Core]Microsoft.FSharp.Core.Unit>, class [mscorlib]
System.IO.TextWriter, class [FSharp.Core]Microsoft.
FSharp.Core.Unit, class [FSharp.Core]Microsoft.FSharp.
Core.Unit, string>::.ctor(string)

IL_000a: call !!0/*class [FSharp.Core]Microsoft.
FSharp.Core.FSharpFunc`2<string, class [FSharp.Core]
Microsoft.FSharp.Core.Unit>*/ [FSharp.Core]Microsoft.
FSharp.Core.ExtraTopLevelOperators::PrintFormatLine<
class [FSharp.Core]Microsoft.FSharp.Core.FSharpFunc`2<
string, class [FSharp.Core]Microsoft.FSharp.Core.Unit>>(
class [FSharp.Core]Microsoft.FSharp.Core.PrintfFormat
`4<!!0/*class [FSharp.Core]Microsoft.FSharp.Core.
FSharpFunc`2<string, class [FSharp.Core]Microsoft.FSharp
.Core.Unit>*/, class [mscorlib]System.IO.TextWriter,
class [FSharp.Core]Microsoft.FSharp.Core.Unit, class [
FSharp.Core]Microsoft.FSharp.Core.Unit>)

IL_000f: stloc.0 // V_0
IL_0010: ldarg.0 // argv
IL_0011: ldc.i4.0
IL_0012: ldelem [mscorlib]System.String
IL_0017: stloc.1 // V_1
IL_0018: ldloc.0 // V_0
IL_0019: ldloc.1 // V_1
IL_001a: callvirt instance !1/*class [FSharp.Core]

Microsoft.FSharp.Core.Unit*/ class [FSharp.Core]
Microsoft.FSharp.Core.FSharpFunc`2<string, class [FSharp
.Core]Microsoft.FSharp.Core.Unit>::Invoke(!0/*string*/)

IL_001f: pop

// [4 5 - 4 6]
IL_0020: ldc.i4.0
IL_0021: ret

} // end of method Program::main
} // end of class Program
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Ordinary assembly code is very primitive; it has no notion of data
types, classes, methods, or other concepts fromprogramming language.
The CLR, on the other hand, does know about these things. For example
see if you can find the text .method public static int32 main in the
CIL program above. That section looks a lot like a Java method, doesn’t
it?

History

F# was developed by a research group at Microsoft Research, led by
Don Syme (Figure 3). Although F# has somenovel features, particularly
the ways in which it interoperates with other .NET code, its syntax19 19 Syntax defines the appearance of a

programming language.and semantics20 are largely inspired by the ML family of programming
20 Semantics defines the meaning of a
programming language.languages. Syntactically, F# addedwhitespace-sensitivity (like Python)

and “lightweight” refinements of older ML syntax that make it more
pleasant to use. If you like Python, you’ll probably like F#.

Figure 3: Don Syme.

Figure 4: Robin Milner.

Figure 5: Luca Cardelli.

MLwasdesigned by researchers at theUniversity of Edinburgh,most
notably Robin Milner (Figure 4) and Luca Cardelli (Figure 5), in the
early 1970’s. ML stands for “meta language,” because it was originally
designed to be a meta language for writing “proof tactics” (you can
think of these as search procedures) for the LCF automated theorem
prover. Although ML was heavily inspired by mathematical logic and
early functional programming languages like LISP21, its authorsmade a

21 The first version of ML was written in
LISP!

concerted effort early on to create something “elegant.” But whatmakes
ML especially interesting is that the language designwas not static. Mil-
ner was inspired by other programming language research happening
concurrently at Edinburgh, notably the HOPE programming language.
ML borrowed many ideas from these other languages whenever a fea-
ture made the language feel simpler or more elegant to its authors. For
example, pattern matching, which is a feature widely enjoyed by ML
users originally came from HOPE.

I enjoy reading ML’s early design documents, because it is clear that
the most important thing was to build a “simple and well-understood”
language. ML was also one of the first languages to have a complete
formal specification. Nonetheless, ML has a strong pragmatic streak
that makes it—in my opinion—a lot more fun to program in than other
programming languages.

MLquickly outgrew its origins in the LCFproject andwasusedwidely
among academics starting in the late 1970’s. “Standard ML” (SML)
arose in the 1980’s out of a desire to obtain many interoperable imple-
mentations ofML.One of themost popular versions of SML is the “Stan-
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dardML of New Jersey” (SML/NJ) implementation that was jointly de-
veloped by Bell Labs and PrincetonUniversity, both ofwhich are inNew
Jersey. Our lab machines have smlnj interpreters installed on them, so
if you’re curious about the differences between F# and SML, have a look.

Compiling using dotnet

If you’ve programmed using Microsoft Windows before, you may have
used the Visual Studio IDE22. Visual Studio is the de facto code editor for 22 Confusingly, “Visual Studio” is a

completely different product than
“Visual Studio Code.”

commercial F# programmers. You are welcome to use Visual Studio if
you have it, but as it is quite expensive, I do not require it for this class.
Instead, wewill be using the cross-platform dotnet tool, which runs the
F# compiler for us.

MSBuild

Manuallymanaging the F# compiler can get a little annoying in the same
way thatmanaging javac or gcc or gcc can be annoying. Therefore, this
class asks you to produce code as a part of anMSBuild project. MSBuild
is Microsoft’s (much more sophisticated) equivalent to C’s Makefiles.
You should have first encountered dotnet in A Brief Introduction to F#.

Because MSBuild projects are written in XML, we will mostly create
andmanage our projects using a command line tool called dotnet. This
tool automatically generates and edits MSBuild files for you. However,
we will occasionally modify MSBuild files by hand so that you under-
stand what they mean.

New projects

We create new projects using the dotnet new command. Typing this
command without arguments will show you a set of project templates
that you can use to create a new project. For this class, we will mostly
use the command dotnet new console -lang F#which creates a new
project for a command-line program using F# as the language.

Note that dotnet new creates a new project in the current directory.
Be careful to avoid putting your code in a location that already has code
as the effect may not be what you intend.
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Building

To build a project, cd to the directory containing your project files and
type

$ dotnet build

Running

To run a project, cd to the directory containing your project files and
type

$ dotnet run

Adding a new file to a project

By default, your project contains only a single file called Program.fs.
Unlike Java, F# does not care where you put your code. It could all go
into a single source code file.

However, as your projects grow in size, you will find it beneficial to
organize your code across multiple files. I like to organize my code ac-
cording to “responsibilities.” For example, maybe I have a program that
reads input, does some processing, builds a data structure, computes
some values, and then prints out the result. In this case, I might have
a file called io.fs for input and output processing, utils.fs to handle
data manipulation (like converting data from arrays into hash tables),
and algorithms.fs for the core computation. I personally like to keep
very little in the Program.fs file, which mostly just contains the main
function. Unless I ask you to organize your code in a specific manner,
use whatever system of organization makes sense to you.

To add a new file to your project, you need to do two things. Suppose
we create a new file called io.fs and we want to call its code from the
Program.fs file. Look for a .fsproj file in your project directory. This
is your project specification. Open it up with your favorite code editor.
You should see something like
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<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<Compile Include="Program.fs" />

</ItemGroup>

</Project>

Weneed to add a Compile tag just above the Compile tag for Program.fs
so that MSBuild will compile io.fs first. Here’s what my .fsproj file
looks like after I make the change:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<Compile Include="io.fs" />
<Compile Include="Program.fs" />

</ItemGroup>

</Project>

Running dotnet build should nowallow Program.fs to refer to code
stored in io.fs. Note that if you’re following along at home, you will
likely see the following error when you try the above.

error FS0222: Files in libraries or multiple-file applications must
begin with a namespace or module declaration

What’s the deal? In short, in F#, you must place all library code in-
side either a module or a namespace. Both of these two things are a form
of code organization. We’ll stick to modules for this course, as names-
paces are only slightly different and are not really necessary unless you
are mixing F# and C# code (C# has no notion of modules, only names-
paces).

Put a module declaration at the top of your module to make this er-
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ror message go away. For example, in io.fs, put:

module IO

and in your Program.fs, write

open IO

“This means something. This is important.” Understanding code
you wrote.

Figure 6: “This means something.
This is important.” If you don’t get the
reference, your homework is to gather
your friends together and watch Close
Encounters of the Third Kind.

As a new CS student, you’ve probably used code that you don’t un-
derstand. Doing so is a bad habit. Whenever you borrow code from
somebody, you really should make the effort to understand it. Let’s un-
derstand the helloworld.fs program we typed in at the beginning of
this reading, line by line.

Entry points

The first line,

[<EntryPoint>]

marks the function as the entry point to the program. The entry point is
the location in the programwhere computation begins. In Java, the main
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function is always the entry point. F# gives you a bit more flexibility: it
can be any single function, as long as that one function is labeled with
the [<EntryPoint>] annotation.

Function definitions

The next line,

let main argv =

denotes the start of a function definition. UnlikeC and Java, F# iswhitespace-
sensitive, like Python. In F# code must be indented using spaces (not
tabs: F# is an opinionated language, meaning that code style is enforced
in the language). The body of the function definition begins at the =
character and extends until the end of the indented region below.

Note that, unlike most languages you’ve studied so far, F# functions
are true functions, meaning that they must always return a value. While
side-effecting functions are possible in F#, they are strongly discour-
aged, and you have do some extra things to use them (like using the
mutable annotation). Thus you are encouraged to write pure functions.
In this class, you should assume that we will be writing pure functions
unless otherwise specified.

This function definition looks sparse, doesn’t it? In fact, despite the
fact that F# is a statically typed programming language, there are no type
annotations in the above. That’s because F# can usually infer the types
of expressions without your help.

In F#, declarations of all kinds start with the keyword let. In gen-
eral, you should assume that let simply means that we should bind the
expression to the right of the = to the name on the left of the =.

If you’ve played with F# a bit you might be thinking, “wait, variables
and functions are declared the same way in F#?” Indeed they are. The
expression

let main argv = ...

declares a function called mainwith a single argument called argv, bound
to the expression on the right, and

let x = 1

declares a variable called x bound to the value 1. Theway that F# knows
the first example is a function and not just a variable is because the part
of the expression to the left of the = sign has an argument (i.e., argv).
In this example, we declare a function main with a single argument,
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argv. Since you’re new to F#, youmay be thinking “how am I supposed
to know what type argv is?” This is admittedly one of the downsides
of type inference; type information is not obvious from the program
text alone. That said, unlike a dynamically typed language like Python,
when you get the type of an expressionwrong, the F# compiler tells you.

Suppose for a moment that my main function was:

let main argv =
argv + 1

Then F# would report,

error FS0001: The type 'int' does not match the type 'string []'

and I would not be able to run the program. Because the type check
fails—argv is a string[], not an int—compilation also fails. A compi-
lation failure is a feature of a statically-typed language, because it enables
you to find bugs in your program before you run it.

You can also add type annotations yourself, and if you are at all un-
surewhat the types of various things are, I encourage you towrite them.
Let’s rewrite our main function with types.

let main(argv: string[]) : int =
printfn "Hello, %s!" argv[0]
0

The syntax of a typed function in F# is the following:

let <function name> (<arg_1>: <type_1>) ... (<arg_n>: <type_n>) : <return type> =
<expression>

It’s up to you how you want to write your programs. F# doesn’t care,
and neither do I. I encourage you to try out the parens-less syntax, how-
ever, as once you are accustomed to it, you will find F# programs very
easy to read.

Function body

The meat of our main function is the following:

printfn "Hello, %s!" argv[0]
0

Notice that this code is indented from main. The indentation is how we
know that the code is a part of the main function definition. Mypersonal
convention is to use 4 spaces. Others use 2. Again, choosewhat you like,
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but note that the F# compiler will not let you use tabs.
The first line calls the printfn function. Function calls in F# work ex-

actly the same way as “application” in the lambda calculus, which we
will discuss in detail in this class. However, the important thing to know
for now is that an expression of the form

a b

means thatwe should call the function awith the argument b. The above
is actually valid F#. Here’s an example that might make more sense to
you:

let b = 1
let a x = x + 1
a b

which returns 2. Type it into dotnet fsi if you don’t believe me.

Function types

Let’s talk a little about function types. When you type an expression
into dotnet fsi, it will print that expression’s type. The -> type nota-
tion tells us that something is a function. So, for instance,

let a x = x + 1

has type

int -> int

because it is a function that takes an int and returns an int. You can
tell that a type of an expression is a function whenever you see the -> in
its type.

By the way, when we put the above function a into dotnet fsi, it
actually prints out the following type:

> let a x = x + 1;;
val a : x:int -> int

Try not to be confused by the extra output. F# is trying to be helpful
by including names alongwith the types. The entire expression is called
a. This makes sense, because we asked F# to name the entire expression
a by using the let keyword. Since the entire expression has a -> in it,
we know it’s a function. The stuff on the left side of -> is the type of the
function’s argument. The stuff on the right side of -> is the type of the
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function’s return value. Therefore, the type of the function’s argument,
x, is int. Finally, the return value has type int.

Polymorphic functions

F# has a very flexiblemodel for polymorphism. Polymorphic code is code
that works for different types of data. You’ve seen polymorphism be-
fore. Java generics are a kind of polymorphism. For example, we know
that linked lists work equally well for integers and strings, so Java lets
us write:

List<Integer> x = new List<>();

for an integer, or

List<String> y = new List<>();

for a string. Nevertheless, but we only need to create a single List
implementation because List can be made generic.

In F#, polymorphic types are known as tick variables because they are
prefaced by the single quote character, '. A function with a tick vari-
able can take any kind of data. For example, let’s look at the identity
function. The identity function just returns whatever it is given. Since
a procedure that “returns whatever it is given” does not need to make
any obvious distinction for different types, we ought to be able to write
a single polymorphic function that works for any of them.

let id x = x

If we type this into dotnet fsi, F# will tell us that the type is:

'a -> 'a

Let’s try using id for values with different types.

> id 5;;
val it : int = 5

It works for numbers. We got 5 back. And you can see that it also
works for strings.

> id "hi";;
val it : string = "hi"
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Curried functions definitions, function types, and function application

OK, I’m about to introduce something very weird. Try not to get upset.
Have a look at the following program again.

[<EntryPoint>]
let main argv =

printfn "Hello, %s!" argv[0]
0

We can rewrite main like:

let main(argv: string[]) : int =
printfn("Hello, %s!")(argv[0])
0

and this is exactly the same program. “BUT WAIT,” you say, “WHY
DOES printfn HAVE TWO PARENS????”

That’s because, in F# function calls are curried.
F# is strongly based on a model of computation called the lambda cal-

culus. We will discuss the lambda calculus in detail this class. For now,
it’s worth noting that the lambda calculus has no notation for functions
that take multiple arguments. It doesn’t have them because they are not
necessary.

Here’s a function in F# that we tend to think of as “taking two argu-
ments.”

let f x y = x y

However, the type for let f x y = x y is:

('a -> 'b) -> 'a -> 'b

which may make your brain squirm a little the first time you see some-
thing like it. Type annotations are easy to read with a little practice.
Let’s break it into pieces.

According to the above type, x, our first variable, must be a function
from any type 'a to type 'b. Since the types of 'a and 'b need not be
the same type, F# uses two different letters (a and b).

If we squint at the type above a little, it has the form:

stuff -> other stuff

So, in principle, we should be able to give it some stuff and get some
other stuff back. We know that the type of that input stuff, x, is ('a ->
'b). xmust be a function, because that’s what it’s type says it is. So let’s
do that. Let’s call fwith a function we’ll name a. We’ll name the output
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g.

let f x y = x y
let a x = x + 1
let g = f a

What is the type of g? It’s also a function. Try it in dotnet fsi so
you can see what type it prints out.

We can keep going. If g is a function, we can call it with an argument,
right?

> g 3;;
val it : int = 4

So what we’ve learned is that functions of multiple arguments in F#
really are functions that return another function. Composing a multi-
argument function from single-argument functions is called currying,
and calling them with arguments one at a time is called partial applica-
tion.

You may find it hard to imagine why we would ever want partially
applied functions. I did too, when I first learned F#! And, in fact, I
went years without explicitly constructing any curried functions, which
seemed to suggest that they were not necessary. Nevertheless, when I
discovered their first “killer application,” combinator parsers, it changed
the way that I thought about them. I now write much more concise,
readable code than the code I wrote before.

Let’s look at the type of the printfn function. It is:

TextWriterFormat<'a> -> 'a

which is, perhaps, a little puzzling until you recall that F# is designed to
interoperate with other .NET code. People using .NET mostly write C#
code, andC#was strongly inspired by Java, especially its use of generics.
This means that F# programs can have both polymorphic types like 'a
and generic types! For the most part, F# will handle the gory details
of converting between these kinds of types for you, but you can see that
the above type declaration uses both: TextWriterFormat is a C# generic
class, but we can give it a polymorphic type 'a.

Anyway, with the above type declaration, we can see that printfn
takes a TextWriterFormat<'a> and returns an 'a. Hang on... we called
printfn with more than one argument, remember?

printfn "Hello, %s!" argv[0]

So should’t printfn be a curried function? Actually, no— and the



A SLIGHTLY LONGER INTRODUCTION TO F# 33

reason is that TextWriterFormat<'a> is already secretly a function. For
example, when used in printfn, the string %s causes F# to infer that
'a must be a function string -> unit, and so the type of printfn be-
comes

(string -> unit) -> string -> unit

and you call it like

printfn "%s" "heya"

If we use the format string "%s %d", then printfn becomes

(string -> int -> unit) -> string -> int -> unit

and you call it like

printfn "%s %d" "hello" 1

This polymorphic mechanism is how printfn is able to “magically”
determine howmany parameters to take depending on the given format
string. Cool, huh? Java cannot do this, and in fact, Java’s String.format
method cannot be checked by the compiler. Instead, Java checks when the
program runs and throws an exception when you mess up, which is an
annoying hack in my opinion.

Return value

The last line in our main program is 0. In F#, the last expression in a
function definition is the return value. If you recall, returning 0 tells the
operating system that “everything ran OK.” Any other value signals an
error.

A few more features

The ML family of languages favors pragmatism over mathematical pu-
rity. Therefore, it allows a programmer great flexibility to wiggle out of
tough situations using mutable variables, side effects, imperative code,
and casts. In this class, use of mutability, side effects, imperative code,
and casts will be penalized, because it’s hard to learn functional pro-
gramming if you can lean on those features. After this class is over,
feel free to use those other features. I myself use them in some circum-
stances, particularly when it is important that my code be fast. By the
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end of this semester, you will have an appreciation for the tradeoffs that
these little “escape hatches” entail, which are substantial.

Expressions

Everything in F# is an expression. Using the dotnet fsi read-eval-
print-loop (REPL) program,

> 1;;
val it : int = 1

we can immediately see that anything we type into the REPL returns a
value.

There are no statements in F#, although there are functions that look
similar. Remember printfn from above? You may recall that when we
called it like

printfn "Hello, %s!" "Dan"

it returned unit. What is unit? unit signals that a function only pro-
duces a side effect. In other words, it does not return anything. Nev-
ertheless, everything in F# is an expression, so something must be re-
turned. To fit into this scheme, the special value () is returned, which
means “nothing” and has type unit. Let’s see for ourselves in dotnet
fsi.

> printfn "Hello, %s!" "Dan";;
Hello, Dan!
val it : unit = ()

Lambda expressions

Lambda expressions are a feature of F# that allow us to create functions
definitions “anonymously.” In other words, a lambda expression is a
function definition with no name.

The following is a lambda expression that computes the identity func-
tion:

fun x -> x

Try it in dotnet fsi. Here’s another example.

let y = 1
(fun x -> x) y
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which evaluates to 1.
Lambda expressions are very useful in F#, and we use them widely,

particularly in map and fold functions, which we will get to in a future
chapter, Higher-Order Functions.

Types

F# is a statically typed programming language, which means that every
variable and datum in the language must have an associated type la-
bel, and that all operations on data must type check, meaning that those
operations are logically consistent.

F# has a small set of primitive data types. These types represent funda-
mental categories of data representation in the underlying CLR virtual
machine. The complete list may be found online23. Primitive types are 23 https://docs.microsoft.

com/en-us/dotnet/fsharp/
language-reference/basic-types

written in lowercase in F#.
F# also allows you to create user-defined types. Note that the conven-

tion in F# is to write variables in all lowercase and user-defined types in
upper camel case24. 24 https://en.wikipedia.org/wiki/

Camel_case

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
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Here we cover some of the defining features of the F# programming lan-
guage.

Algebraic data types and pattern matching

Algebraic data types (ADTs) and pattern matching are two features
first widely used in the Hope25) programming language, which was 25 https://en.wikipedia.org/wiki/

Hope_(programming_languagedeveloped concurrently with ML. ADTs and pattern matching are like
chocolate and peanut butter: better together26 (this commercial is to- 26 https://www.youtube.com/watch?v=

hHPY5yoINMAtally ridiculous and worth the 30 seconds of your time.)
Algebraic data types are a way of concisely express hierarchies of

typeswithout inheritance. Inheritance is a feature from object-oriented pro-
gramming, which we will discuss later in the semester. If you already
happen to know what inheritance is, you can think of ADTs as its func-
tional equivalent. As you will see, they are in many ways much more
elegant and easy to reason about, although there is a big tradeoff when
it comes to large-scale software engineering projects.

Let’s create a data type that represents a small set of animals. We’d
like, at various points in our program, to be able to work generically
with animals, and then at other points, to be able to work specifically
with specific animals, like ducks and geese.

type Animal =
| Duck
| Goose
| Cow
| Human

The above is an algebraic data type. In F#, we call this kind of type
definition a discriminated union. In other ML variants, these are some-
times called union types or sum types. These terms mean the same thing.

What is the meaning of Duck or Cow? They are, in fact, constructors.
So if we want a Duck, we type Duck. Let’s try it in dotnet fsi:

https://en.wikipedia.org/wiki/Hope_(programming_language
https://en.wikipedia.org/wiki/Hope_(programming_language
https://en.wikipedia.org/wiki/Hope_(programming_language
https://www.youtube.com/watch?v=hHPY5yoINMA
https://www.youtube.com/watch?v=hHPY5yoINMA
https://www.youtube.com/watch?v=hHPY5yoINMA
https://www.youtube.com/watch?v=hHPY5yoINMA
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> let donald = Duck;;
val donald : Animal = Duck

Likewise, if we want a Cow, we type:

> let ephelia = Cow;;
val ephelia : Animal = Cow

Notice that the types of donald and ephelia are, quite specifically,
Animals.

Let’s now make a function that takes an Animal and does the “right
thing” depending on the kind of animal.

let squeeze a =
match a with
| Duck -> "quack!"
| Goose -> "honk!"
| Cow -> "meeeeph!"
| Human -> "WHY ARE YOU SQUEEZING MEEEEEE????"

The match ... with expression tells F# that wewant to perform the
appropriate thing using pattern matching. Pattern matching is a feature
of many functional programming languages that let you concisely ex-
press conditional logic.

So if we squeeze ephelia, the function does the right thing:

> squeeze ephelia;;
val it : string = "meeeeph!"

Patternmatching is always type-safe. Supposewe forgot to put in the
case for Human. The F# compiler will report that we missed a case.

match a with
--------^

warning FS0025: Incomplete pattern matches on this expression. For example,
the value 'Human' may indicate a case not covered by the pattern(s).

Patternmatching also lets us deal conciselywith cases that don’tmat-
ter to us. For example, imagine that all we really care about is squeezing
Cows. We could write:

let squeeze a =
match a with
| Cow -> "meeeeph!"
| _ -> "complaint"
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The _ indicates a default case that will only be exercised by an Animal
that is not a Cow.

ADTs that store data

The ADTs we’ve seen so for are limited in their usefulness because they
don’t store any data. We can extend them to store any data thatwewant.

type 'a List =
| Node of 'a * 'a List
| Empty

The above is a complete definition for a linked list. Expressions of
the form 'a * 'b are tuples. So a 'a * 'a List is a 2-tuple that stores
data of type 'a on the left and a reference to a List on the right. You
can have tuples of any arity in F#.

Also, observe that, we can also write types recursively. A Node stores
a reference to a List27. 27 If you feel comfortable with our notion

of algebraic data types so far, great!
See if you can modify our List type
to represent a binary tree. After all, a
binary tree really is just a linked list with
an extra reference...

Let’s write a prettyprint function that, when given a List, prints it
out all pretty. Here is an imaginary example in dotnet fsi:

> let mylist = Node ("a", Node ("b", Node ("c", Empty)));;
val mylist: string List = Node ("a", Node ("b", Node ("c", Empty)))
> prettyprint mylist;;
val it: string = "[a, b, c]"

Below is a reasonable first attempt at making our fantasy come true:

let rec prettyprint ll =
match ll with
| Node(data, ll') -> data.ToString() + ", " + (prettyprint ll')
| Empty -> ""

Each case in our match expression, known as a pattern guard, ensures
that ll has the form specified on the left side before executing the right
side. When a case matches, data is bound to the given variables, in this
case, data and ll'. For example, the data stored in the given Node is
bound to the variable data; the tail of the list is bound to the variable
ll'.

Pattern guards are composed from deconstructors, which have the same
syntax and are essentially the inverse of constructors. For example, you
can construct a tuple and deconstruct it using the same syntax.
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> let tup = (1, "hi");;
val tup : int * string = (1, "hi")

> let (a,b) = tup;;
val b : string = "hi"
val a : int = 1

Anyway, let’s try out our prettyprint function:

> prettyprint mylist;;
val it: string = "a, b, c, "

Hmm. Not quite. But with a little massaging, we can get this to work.
One approach is to define a helper function. Note that functional pro-
gramming languages let use define functions inside of function defini-
tions28. 28 If this sounds crazy to you ask your-

self: why not? Eventually you’ll see that
disallowing this behavior is actually the
crazy design choice. Nested function
definitions are very useful.

let prettyprint ll =
let rec pp ll =
match ll with
| Node(data, Empty) -> data.ToString()
| Node(data, ll') -> data.ToString() + ", " + (pp ll')
| Empty -> ""

"[" + (pp ll) + "]"

Notice that we made a number of changes to our original function.
First, we defined a helper function, pp, inside of our main prettyprint
function. Second, we called pp at the very end of prettyprint, and we
surround whatever it returns with square brackets. Finally, because we
want to omit the trailing comma, we have a special case: we check to see
that a node is the last node so that we can construct a special string for
that case. We have to check that case first, because the second case in
the above pattern match is more general. And finally, we kept the Empty
case at the end. You might be wondering why we do that given that we
check for emptiness in our first case. Well, consider the following kind
of list.

> let mylist2 = Empty;;
val mylist2: 'a List

> prettyprint mylist2;;
val it: string = "[]"

In short, the above definition works for empty lists too. I personally
find the use of ADTs and pattern matching a refreshing way to build
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software. Many concepts in computer science are simple and elegant in
theory but difficult to implement in code in practice. F# and other ML
languages give us the tools to express simple concepts simply.

Limitations

There are two things to note about the above definitions. First, note that
I am not able to write the following definition:

type Thing =
| A of char
| B of string
| C of A * B

This definition produces the following error:

| C of A * B
-------^

error FS0039: The type 'A' is not defined.

Although ADTs admit recursive definitions, that’s not what we’re look-
ing at here. Importantly, cases in an ADT are not data types. Instead,
A, B, and C are constructors for the one type called Thing. So we cannot
refer to A or B or C in our definition of Thing. We could instead write the
following:

type Thing =
| A of char
| B of string
| C of Thing * Thing

but that’s not quite the same since that lets a C store a C and maybe
that’s not what you want. To get that, we’d have to write,

type A = char
type B = string
type C = A * B
type Thing =
| A of A
| B of B
| C of C

and that all works although it’s a tad inelegant.
A second limitation is thatwe had to use the rec keyword somewhere

in our pp definition.
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let rec pp ll =

Leaving out the rec produces the following error:

| Node(data, ll') -> data.ToString() + ", " + (pp ll')
---------------------------------------------------^^

error FS0039: The value or constructor 'pp' is not defined.

This error occurs because F# strictly adheres to the rules of the lambda
calculus29. We will talk more about the lambda calculus in the future. 29 For the curious, the reason is that F#

uses a “desugaring” approach to inter-
pret let expressions. An expression of
the form let z = U in V desugars to
the expression (λz.V)U. Well, if z is a
function name, it is not available to use
in the expression U because U is outside
the lambda abstraction. Adding the rec
keyword tells F# that the name of the
function should be available inside the
function body. In effect, a recursive let
is different than a regular let.

Equality and type checking

Type checking is the process of ensuring that the use of values is log-
ically consistent. F# can sometimes check at compile time whether two
values will ever be equal without having to inspect values.

F#’s type system is a little different than the kind you’ve seen before
in Java and C. Java and C use a form of types called a nominal type sys-
tem. In essence, a nominal type is simply a label. Nominal type checking,
therefore, boils down to ensuring that these labels match. For example,
the following C program fails to type check:

int i = 1;
char *c = i;

because i is an int and c is a char *, although because C is weakly
typed, this is only a warning and not a fatal compilation error:

program.c:3:9: warning: incompatible integer to pointer conversion
initializing 'char *' with an expression of type 'int'

[-Wint-conversion]
char *c = i;

^ ~

Java adds extra expressiveness to C’s nominal type system which al-
lows it to express subtypes (i.e., inheritance), which is why we say that
it has a nominal type system with subtyping. Subtyping essentially means
that, under some circumstances, some labels can be substituted for oth-
ers. Java also enforces types strongly, so the Java equivalent to the above
C program is a fatal compilation error.

F# uses a systemof structural typing. In this case, equality ismore than
just checking labels, although labels are at the “bottom” of the type sys-
tem. Structural type checking means that the type checker must prove,
inductively, that two expressions are equivalent because they yield the
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same structural type.
An example helps to clarify. For example,

> let a = 1;;
val a : int = 1

> let b = 1;;
val b : int = 1

> a = b;;
val it : bool = true

In this case, not only are the types for a and b equal, so are the values
(note that F# denotes equality using the = symbol, not the == symbol;
“not equal” is denoted with <>).

Neither a nor b have any “structure” and so the base case for struc-
tural type checking is nominal: we simply check that the labels match
(int equals int).

But how do we check the equality of something more complicated?
The following checks equality inductively:

> let c = (1,"hi");;
val c : int * string = (1, "hi")

> let d = (1,"hi");;
val d : int * string = (1, "hi")

> c = d;;
val it : bool = true

To see that (1,"hi") equals (1,"hi"), we need to know the type of
each expression. Both are 2-tuples. Thus, we know for two 2-tuples to
be equal, wemust check that both left sides are equal and that both right
sides are equal (inductive step). Both left sides are int and 1 equals 1
(base case). Both right sides are string and "hi" equals "hi" (base
case). Therefore, both 2-tuples are equal. Therefore (1,"hi") equals
(1,"hi").

Structrual type systems make equality comparisons very easy, and
they extend to what are normally “opaque” types in other languages,
like lists and arrays.

Lists

Lists are frequently utilized in functional programming. The original
functional programming language, LISP, demonstrated that lists can be
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used as a fundamental unit of composition for many more complicated
data structures. F# also allows you to use lists in this manner, and be-
cause they are so important and widely-used, they are even easier to
manipulate than in LISP. Although we were able to define a List type
above, lists are so important to F# that it has special, built-in syntax to
support them.

For example, the following lets us define a list using list literal syntax
in F#:

let xs = [1; 2; 3; 4;]

We can also perform a variety of operations on lists easily.

> let xs = [1; 2; 3; 4;];;
val xs : int list = [1; 2; 3; 4]

> List.head xs;;
val it : int = 1

> List.tail xs;;
val it : int list = [2; 3; 4]

> let xs' = 0 :: xs;;
val xs' : int list = [0; 1; 2; 3; 4]

> List.length xs';;
val it : int = 5

> List.append xs' xs';;
val it : int list = [0; 1; 2; 3; 4; 0; 1; 2; 3; 4]

> List.rev xs';;
val it : int list = [4; 3; 2; 1; 0]

> List.sum xs;;
val it : int = 10
> xs' = xs';;
val it : bool = true

> xs = xs';;
val it : bool = false
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> let ys = [0; 1; 2; 3; 4];;
val ys : int list = [0; 1; 2; 3; 4]

> xs' = ys;;
val it : bool = true

Notice that we were able to compare two lists simply, using = instead
of ==. F# does not need us to distinguish between assignment and equal-
ity testing because it can tell from the context. F#’s structural type sys-
tem makes this possible. We can even pattern-match on lists, which is
incredibly useful for functions that recursively do something for every
element in a list:

let rec list_length xs =
match xs with
| [] -> 0
| x::xs' -> 1 + list_length xs'

where [] or nil represents the empty list and :: means “construct list,”
an operation we call cons for short.

> list_length xs;;
val it : int = 4

Complete documentation for F# lists is available online30. F# is a prag- 30 https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/lists

matic language, and as amatter of pragmatism, we should probably rec-
ognize that lists have undesirable performance properties for many ap-
plications, particularly numerical computing. For many applications,
richer data types are desirable. F# has these too.

Arrays

Lists have O(n) performance for random-access. In other words, in the
worst case, the cost of accessing an element is the cost of traversing the
entire list. Arrays have much better performance for random-access:
O(1). In otherwords, theworst case performance for arrays is a constant
time, or the amount of time it takes to execute a single operation.

The following lets us define an array using array literal syntax in F#:

let arr = [|1; 2; 3; 4;|]

We can also perform a variety of operations on arrays easily:

> let arr = [|1; 2; 3; 4;|];;
val arr : int [] = [|1; 2; 3; 4|]

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
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> let i = arr.[3];;
val i : int = 4

> Array.length arr;;
val it : int = 4

> Array.rev arr;;
val it : int [] = [|4; 3; 2; 1|]

> Array.filter (fun x -> x > 2) arr;;
val it : int [] = [|3; 4|]

> arr.[0..1];;
val it : int [] = [|1; 2|]

> arr.[2..];;
val it : int [] = [|3; 4|]

> arr.[..2];;
val it : int [] = [|1; 2; 3|]

> Array.init 10 (fun i -> i * i);;
val it : int [] = [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81|]

> Array.sum (Array.init 10 (fun i -> i * i));;
val it : int = 285

> Array.map (fun x -> x + 1) arr;;
val it : int [] = [|2; 3; 4; 5|]

> Array.fold (fun acc x -> acc + x) 0 arr;; // this is fold left
val it : int = 10

> Array.foldBack (fun x acc -> acc + x) arr 0;; // this is fold right
val it : int = 10

> let arr2 = [|1; 2; 3; 4;|];;
val arr2 : int [] = [|1; 2; 3; 4|]

> arr = arr2;;
val it : bool = true

Notice that we were able to compare two arrays simply, using =. This
is possible because of F#’s structural type system.

The complete documentation on F# arrays is available online31. 31 https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/arrays

Other types

F#hasmanyother types, including Tuple, Sequence, Map, Option, classes,
interfaces, and abstract classes, and many others. The latter three types

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
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are object oriented features of F#. Please do not use classes, interfaces,
or abstract classes unless I ask you to do so.

Conditionals

if/else expressions look a bit like their counterparts in Python:

if x > 0 then
1

else
2

Of course, since conditionals are expressions in F#, you can also do
neat tricks like use them to conditionally assign values, much like how
you might use the ternary operator (a ? b : c) in C:

let y = if x > 0 then
1

else
2

Indentation is important for conditionals. Note that the body of the
true and false clauses must be indented past the start of the if expres-
sion.

Loops

While F# has looping constructs, for and while, you should not use
them in this class. Instead, you should use map, fold, and recursion
instead.

The following table provides a handy guide for deciding which con-
struct to use in F# when your brain tells you that you need to use a loop.

Problem Java F#
Do something until a condition is satisfied while Write a recursive function and make the condition a base case.
Do something for a bounded number of times for Write a recursive function and make the bound a base case.
Convert every element of a collection into something else for or foreach map
Accumulate a value for, foreach, or while fold
Convert a recursive data structure into another data structure Recursive function Recursive function or fold

Recursion instead of while

Let’s start with recursion to solve problems. One nice thing about a
while loop is that you don’t need to know how many times your pro-
gram needs to repeat itself until it is done computing a value. For ex-
ample, when doing a membership query in an unsorted linked list in
C (e.g., “is 4 in the list?”), you can use a while loop to simply continue
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getting the next element until it is found.

bool contains(listnode *xs, int x) {
while (xs != null) {
if (xs->head == x) {
return true;

} else {
xs = xs->tail;

}
}
return false;

}

What characterizes problems like this is that there is no obvious bound
on the loop before we find the element we’re looking for. We solve this
class of problems in functional programming with recursion.32 32 Remember that recursive function

definitions must use let rec.
let rec contains xs x =
match xs with
| [] -> false
| y::ys ->
if x = y then
true

else
contains ys x

This particular solution pattern matches on the list to deconstruct it
into a head (y) and a tail (ys), but you could also explicitly call List.head
and List.tail if you wanted.

You might argue that this is a silly example because we know that
there can be no more comparisons than the length of the list. That’s
true. But there are other problems where you actually don’t know at all,
and the same pattern applies. For example, what if we wanted to run
a little experiment: how many times do we need to flip a coin before a
heads comes up? The outcome is determined by the laws of probability.
It probably won’t take many coin flips for heads to come up—in fact, we
know that we have a 50% chance on the very first try—but it could take a
very long time. There’s a nonzero probability that it could take a trillion
coin flips.
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let rec num_tries_until_match(r: System.Random)(n: int)(i: int)(e: int) =
let rn = r.Next(n)
if rn = e then
i

else
num_tries_until_match r n (i + 1) e

Other important features

F# has essentially every feature that a modern language like Java has,
and there are far too many to discuss in this class. However, there are
a few more convenienc that are worth a mention, and I discuss those
here. One last important feature, higher-order functions, will have to wait
until you understand the lambda calculus, so we discuss that feature in
a separate chapter.

Raising Exceptions

You can define an exception in F# like:

exception MyError of string

and you can throw it like:

raise (MyError("Error message"))

F# also has a “lightweight” syntax that I use frequently:

failwith "something bad happened!"

Runtime exceptions are more useful in F# than they are in ordinary
languages. Because F# is functional and strongly-typed, sometimes the
type checker gets in the way. One very useful trick that you can use as
your “stub out” a method is to use failwith to make the type checker
temporarily go away.

let rec prettyprint e =
match e with
| Variable(c) -> c.ToString()
| Abstraction(v,e') -> failwith "TODO1"
| Application(e', e'') -> failwith "TODO2"
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I use this trick frequently, although you should be aware that doing
so trades a compile-time error for a runtime one!

Catching Exceptions

You can catch exceptionsing using F#’s try ... with syntax,

try
prettyprint (Abstraction('x', Variable('x')))

with
| MyError(msg) -> "oops: " + msg

which returns the string value "oops: TODO1".

Option types

Like Java and C#, you can store null in values.

let x = null

However, the use of null is nowwidely regarded as amistake in com-
puter science. Tony Hoare (winner of the Turing Award), and inventor
of null, called it a “billion-dollar mistake”:

I call it my billion-dollarmistake. It was the invention of the null reference
in 1965. At that time, I was designing the first comprehensive type sys-
tem for references in an object oriented language (ALGOL W). My goal
was to ensure that all use of references should be absolutely safe, with
checking performed automatically by the compiler. But I couldn’t resist
the temptation to put in a null reference, simply because it was so easy
to implement. This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion dollars of pain and
damage in the last forty years.

Instead, in F#, we prefer the type-safe option type. Let’s write a func-
tion that uses option.

let onedivx x =
if x = 0.0 then
None

else
Some (1.0 / x)

Now when we use onedivx, we get back an option type:
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> onedivx 0.0;;
val it : float option = None

> onedivx 1.1;;
val it : float option = Some 0.9090909091

option gives us a way to signal the failure of a computation in a type-
safe manner. In fact, the type-checker forces us to deal with the error:

> (onedivx 0.0) + 2.2;;

(onedivx 0.0) + 2.2;;
----------------^^^

error FS0001: The type 'float' does not match the type 'float option'

To use the return value, we must “unwrap” it first, using pattern
matching.

> match onedivx 0.0 with
- | Some res -> printfn "%f" res
- | None -> printfn "Oh, dear!"
- ;;
Oh, dear!
val it : unit = ()

Where n is the number of “sides” of our coin (or die, or whatever),
i is the count so far, and e is the value we’re looking for. Let’s say that,
when n = 2, then when e = 0 that’s heads and when e = 1 that’s tails.
If we call this a few times, you can see that the answer can vary quite a
bit:
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> let r = System.Random();;
val r : System.Random

> num_tries_until_match r 2 1 0;;
val it : int = 3

> num_tries_until_match r 2 1 0;;
val it : int = 1

> num_tries_until_match r 2 1 0;;
val it : int = 2

> num_tries_until_match r 2 1 0;;
val it : int = 4

> num_tries_until_match r 2 1 0;;
val it : int = 5

Further Reading

The complete F# language reference is available online33. I encourage 33 https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/

you to refer to it often as it is uncharacteristically thorough for technical
documentation while remaining easy to read.

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/


Grammars and Parse Trees

Excerpt from Mitchell’s “Concepts in Programming Languages,” pp. 52–57

Figure 7: You might be intimidated by
the use of the word formal in mathemat-
ics and computer science. You should
not be. A formal tool is one that you can
use as long as the “shape” of the prob-
lem fits the “mold” of the tool. I like to
think of the baby toy shown above. The
only trick to using a formal tool is to
learn to recognize when the shape “fits.”

A parser is a program that converts a sequence of characters into a data
structure called a parse tree. Parse trees represent the structure of a pro-
gramming language in a form that is easy to analyze and interpret on a
computer. In order to perform this conversion, we need a way of specify-
ing how a language “looks.” We call the “look” or surface appearance of a
language its syntax, and to specify a syntax, we rely on a tool from formal
language theory (see Figure 7) called a grammar. A grammar is simply a
methodical description of a syntax. It is a fundamental tool in a language
designer’s toolbox. [–ed.]

Grammars

Grammars provide a convenient method for defining infinite sets of ex-
pressions. In addition, the structure imposed by a grammar gives us a
systematic way of processing expressions.

A grammar consists of a start symbol, a set of nonterminals, a set of
terminals, and a set of productions. The nonterminals are symbols that
are used to write out the grammar, and the terminals are symbols that
appear in the language generated by the grammar. . . .Here we use a . . .
compact notation, commonly referred to as BNF.34 34 Backus-Naur Form, named after its

inventors, John Backus and Peter Naur,
who first used it to describe the influ-
ential (if not widely used) ALGOL
programming language. Interestingly,
the same idea may have been indepen-
dently invented nearly 25 centuries ago
by the scholar, Pāṇini, who used it to
describe Sanskrit. [–ed.]

The main ideas are illustrated by example. A simple language of nu-
meric expressions is defined by the following grammar:35

35 Note that ::= means “is defined as”
and | means “alternatively.”

<e> ::= <n> | <e> + <e> | <e> - <e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

where <e> is the start symbol, symbols <e>, <n>, and <d> are nonter-
minals, and 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, and - are the terminals. The
language defined by this grammar consists of all the sequences of ter-
minals that we can produce by starting with the start symbol <e> and
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by replacing nonterminals according to the preceding productions. For
example, the first preceding production means that we can replace an
occurrence of <e> with the symbol <n>, the three symbols <e> + <e>,
or the three symbols <e> - <e>. The process can be repeated with any
of the preceding three lines.

Some expressions in the language given by this grammar are

0
1 + 3 + 5
2 + 4 – 6 - 8

Sequences of symbols that contain nonterminals, such as

<e>
<e> + <e>
<e> + 6 - <e>

are not expressions in the language given by the grammar. The purpose
of nonterminals is to keep track of the form of an expression as it is being
formed. All nonterminals must be replaced with terminals to produce
a well-formed expression of the language.

Derivations

A sequence of replacement steps resulting in a string of terminals is
called a derivation.

Here are two derivations in this grammar, the first given in full and
the second with a few missing steps that can be filled in by the reader
(be sure you understand how!):

<e> → <n> → <n><d> → <d><d> → 2<d> → 25

<e> → <e> - <e> → <e> - <e> + <e> → … → <n> - <n> + <n> → … → 10 - 15 + 12

Parse Trees and Ambiguity

It is often convenient to represent a derivation by a tree. This tree, called
the parse tree of a derivation, or derivation tree, is constructed with the
start symbol as the root of the tree. If a step in the derivation is to replace
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swith x1 , ... ,xn , then the children of s in the tree will be nodes labeled
x1 , ... ,xn.

The parse tree for the derivation of 10 - 15 + 12 in the preceding
subsection has some useful structure. Specifically, because the first step
yields <e> - <e>, the parse tree has the form

<e>

<e> - <e>

<n>

<n><d>

<d>

1

0

<e> + <e>

<n>

<n><d>

<d>

1

5

<n>

<n><d>

<d>

1

2

This tree is different from

<e>

<e> + <e>

<e> - <e>

<n>

<n><d>

<d>

1

0

<n>

<n><d>

<d>

1

5

<n>

<n><d>

<d>

1

2

which is another parse tree for the same expression. An important fact
about parse trees is that each corresponds to a unique parenthesization
of the expression. Specifically, the first tree corresponds to 10 - (15
+ 12) whereas the second corresponds to (10 - 15) + 12. As this ex-
ample illustrates, the value of an expression may depend on how it is
parsed or parenthesized.

A grammar is ambiguous if some expression has more than one parse
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tree. If every expression has at most one parse tree, the grammar is
unambiguous.

Example 4.1

There is an interesting ambiguity involving if-then-else. This can be
illustrated by the following simple grammar:

<s> ::= <v> := <e> | <s>;<s> | if <b> then <s> | if <b> then <s> else <s>
<v> ::= x | y | z
<e> ::= <v> | 0 | 1 | 2 | 3 | 4
<b> ::= <e>=<e>

where <s> is the start symbol, <s>, <v>, <e>, and <b> are nonterminals,
and the other symbols are terminals. The letters <s>, <v>, <e>, and <b>
stand for statement, variable, expression, and Boolean test, respectively.
We call the expressions of the language generated by this grammar state-
ments.

Here is an example of a well-formed statement and one of its parse
trees:

x := 1; y := 2; if x=y then y := 3

<s>

<s> ; <s>

<v> := <e>

x 1

<s> ; <s>

<v> := <e>

y 2

if <b> then <s>

<e> = <e>

<v>

x

<v>

y

<v> := <e>

y 3

This statement also has another parse tree, whichweobtain byputting
two assignments to the left of the root and the if-then statement to the
right. However, the difference between these two parse trees will not
affect the behavior of code generated by an ordinary compiler. The rea-
son is that it is normally compiled to the code for s1 followed by the
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code for s2. As a result, the same code would be generated whether we
consider s1;s2:s3 as (s1;s2);s3 or s1;(s2;s3).

Amore complicated situation arises when if-then is combinedwith
if-then-else in the following way:

if b1 then if b2 then s1 else s2

What should happen if b1 is true and b2 is false? Should s2 be ex-
ecuted or not? As you can see, this depends on how the statement is
parsed. A grammar that allows this combination of conditionals is am-
biguous, with two possible meanings for statements of this form.

Parsing and Precedence

Parsing is the process of constructing parse trees for sequences of sym-
bols. Suppose we define a language L by writing out a grammar G.
Then, given a sequence of symbols s, we would like to determine if s is
in the language L. If so, then we would like to compile or interpret s,
and for this purpose we would like to find a parse tree for s. An algo-
rithm that decides whether s is in L, and constructs a parse tree if it is,
is called a parsing algorithm for G.

There aremanymethods for building parsing algorithms from gram-
mars. Many of these work for only particular forms of grammars. Be-
cause parsing is an important part of compilingprogramming languages,
parsing is usually covered in courses and textbooks on compilers. For
most programming languages you might consider, it is either straight-
forward to parse the language or there are some changes in syntax that
do not change the structure of the language very much but make it pos-
sible to parse the language efficiently.

Two issues we consider briefly are the syntactic conventions of prece-
dence and right or left associativity. These are illustrated briefly in the
following example.

Example 4.2

Aprogramming languagedesignermight decide that expressions should
include addition, subtraction, and multiplication and write the follow-
ing grammar:

<e> ::= 0 | 1 | <e> + <e> | <e> - <e> | <e> * <e>
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This grammar is ambiguous, as many expressions have more than
one parse tree. For expressions such as 1 - 1 + 1, the value of the ex-
pression will depend on the way it is parsed. One solution to this prob-
lem is to require complete parenthesization. In other words, we could
change the grammar to

e ::= 0 | 1 | (<e> + <e>) | (<e> - <e>) | (<e> * <e>)

so that it is no longer ambiguous. However, as you know, it can be awk-
ward to write a lot of parentheses. In addition, for many expressions,
such as 1 + 2 + 3 + 4, the value of the expression does not depend
on the way it is parsed. Therefore, it is unnecessarily cumbersome to
require parentheses for every operation.

The standard solution to this problem is to adopt parsing conven-
tions that specify a single parse tree for every expression. These are
called precedence and associativity. For this specific grammar, a natural
precedence convention is that multiplication has a higher precedence
than addition (+) and subtraction (—). We incorporate precedence into
parsing by treating an unparenthesized expression e op1 e ep2 e as
if parentheses are inserted around the operator of higher precedence.
With this rule in effect, the expression 5 * 4 - 3 will be parsed as if
it were written as (5 * 4) - 3. This coincides with the way that most
of us would ordinarily think about the expression 5 * 4 - 3. Because
there is no standard way that most readers would parse 1 + 1 - 1, we
might give addition and subtraction equal precedence. In this case, a
compiler could issue an error message requiring the programmer to
parenthesize 1 + 1 - 1. Alternatively, an expression like this could be
disambiguated by use of an additional convention.

Associativity comes into play when two operators of equal prece-
dence appear next to each other. Under left associativity, an expres-
sion <e> <op1> <e> <op2> <e> would be parsed as (<e> <op1> <e>)
<op2> <e>, if the two operators have equal precedence. If we adopted a
right-associativity convention instead, <e> <op1> <e> <op2> <e>would
be parsed as <e> <op1> (<e> <op2> <e>).

Expression Precedence Left Associativity Right Associativity
5 * 4 - 3 (5 * 4) - 3 no change no change
1 + 1 - 1 no change (1 + 1) - 1 1 + (1 - 1)
2 + 3 - 4 * 5 + 2 2 + 3 - (4 * 5) + 2 ((2 + 3) - (4 * 5)) + 2 2 + (3 - ((4 * 5)) + 2))



Introduction to the Lambda Calculus, Part 1

This is part 1 of a two-part reading on the lambda calculus. In this read-
ing, I introduce the lambda calculus, its origins and purpose, and dis-
cuss its syntax. In part 2, I will discuss its semantics.

Introduction

The lambda calculus is a model of computation. It was invented in
the 1930’s by the mathematician Alonzo Church, who like his contem-
porary, Alan Turing, was interested in understanding what computers
were capable of doing in principle.

For me, there are three really remarkable things about the lambda
calculus.

1. Although this fact has never been proven, it is widely believed that
the lambda calculus is capable of expressing any computation.

2. Itwas invented before any computers actually existed in the realworld.
3. It is really, really simple.

The lambda calculus is equivalent in expressive power to that other
famous model for computation, the Turing machine. Unlike the Turing
machine, though, the lambda calculus has an elegance to it that the Tur-
ing machine lacks. For starters, with some effort, you can understand
a “program” written in the lambda calculus. It is incredibly difficult to
understand any kind of “program” written for a Turing machine, be-
cause a Turing machine closely corresponds to a mechanical computer.
The lambda calculus, on the other hand, is essentially the language of
functions.

As a result, the lambda calculus serves as the theoretical foundation
for many real programming languages, most notably LISP. More mod-
ern languages, like ML and Haskell, are also deeply influenced by the
lambda calculus. Many ideas that came from the lambda calculus, like
“anonymous functions,” have found their way into bread-and-butter
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languages like Javascript, Java, C#, and even C++. When we talk about
“functional programming,” at its core, what we’re talking about is the
lambda calculus.

The lambda calculus as a programming language

The lambda calculus can be thought of as a kind of minimal, universal
programming language. What do I mean by “minimal”? I mean that it
is small and that its features are essential in some way. By “universal”
I mean that it is capable of expressing all computable functions. While
it is probably not the most minimal programming language36, it is the 36 In fact, the Intel mov instruction all by

itself has the same expressive power.
See the paper mov is Turing-complete, by
Stephen Dolan, University of Cambridge
Computer Laboratory.

most useful minimal language that I know of. Wewill talk about what a
computable function is later; for now, understand it to mean that an ideal
computer should be capable of computing it.

Formal definitions

Since I claim that the lambda calculus is like a programming language,
we ought to be able to examine it formally like a programming language.
Most formal specifications of a language come in two pieces: 1. syntax
and 2. semantics.

Syntax is the “surface appearance” of a programming language. For
example, the following snippets are from Java and F#, respectively.
Java:

int sum(List<Integer> lst) {
int accumulator = 0;
for (Integer i: lst) {

accumulator += i;
}
return accumulator;

}

F#:

let sum xs
let mutable accumulator = 0
for x in xs do

accumulator <- accumulator + x
accumulator
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These two languages have different syntax, so they look different;
they use different words. But both sum functions written here convey
exactly the same meaning. Therefore, the two functions have the same
semantics.

Syntax of the lambda calculus

So let’s start with the appearance of the lambda calculus. What does it
look like?

Here’s one of the simplest functions you can write in the lambda cal-
culus: the identity function.

λx.x

You might have seen this in algebra before. It looks something like:

f(x) = x

Or maybe Java?

T identity<T>(T t) {
return t;

}

The lambda calculus version expresses exactly the same concept as
the algebraic and Java versions.

Actually, the lambda version is more concise: In the algebra version
and the Java version, functions are named. In the algebraic expression
above, the function is named f. In the Java version is it called identity.
In the lambda calculus, functions do not have names associated with
them. They are all anonymous. Why? Because Church was looking for a
minimal model of computation. As it turns out, function names are not
essential.

Backus-Naur form

Syntax is the arrangement of words and phrases to create well-formed
sentences in a language. When we say well-formed, what we mostly
mean is thatwe are not just stringing togetherwords arbitrarily, forming
nonsense. Instead, there are rules that dictate how words go together.
These rules ensure that sentences in our language follow patterns that
allow us to extract conventional meanings from them.

The rules that define a syntax are called a grammar. The bootstrap-
ping problem of how exactly one comes up with a language that de-
scribes languages dates back to Indian scholars of antiquity. In the 1950’s,
John Backus and Peter Naur devised a simple, formal solution. Using
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their system, one can “generate” all of the valid sentences belonging to
a language. That system is now known as Backus-Naur form, or BNF.

Here is the grammar for the lambda calculus:

<expression> ::= <variable>
| <abstraction>
| <application>

<variable> ::= x
<abstraction> ::= λ<variable>.<expression>
<application> ::= <expression><expression>

This grammar is important enough—and simple enough—that I sug-
gest that you memorize it.

BNF has two kinds of grammar constructions: nonterminals and ter-
minals. In the grammar above, nonterminals are written between angle
brackets (< and >). Other characters or words are terminals. I will ex-
plain what these things mean in a moment.

The ::= means “is defined as” and the | means “alternatively.” So if
you read the definitions literally, they say:

<expression> is defined as <variable>. Alternatively, <expression>
is defined as <abstraction>. Alternatively, <expression> is defined as
<application>.

<variable> is defined as x.

<abstraction> is defined as λ<variable>.<expression>.

<application> is defined as <expression><expression>.

Each line in the grammar is known as a production rule (or just rule for
short), because it produces valid syntax. If you start with the “top level”
nonterminal <expression>, and follow the production rules, when you
finally have a sentence that contains only terminals, you now have a
valid sentence in the grammar. Since our grammar is for the lambda cal-
culus, this means that you have a valid lambda expression (program).

Following a rule is called an expansion. Let’s try a couple expansions
and see what kind of sentences we can get.
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Example 1:

1. Start with <expression>.

<expression>

2. Expand it into either <variable>, <abstraction>, or <application>.
Let’s choose <variable>.

<variable>

3. If we look at our definition for variable, there is not much choice. It
must be expanded into one thing only:

x

Since no nonterminals remain, we now know that x is a valid lambda
calculus program.

Example 2:

1. Start with <expression>.

<expression>

2. Let’s expand it into <abstraction>.

<abstraction>

3. This also expands into the following.

λ<variable>.<expression>

4. Asweknow, <variable> only expands into one thing, x, but <expression>
could be many things.

λx.<expression>

5. It should be apparent, at this point, that this process is recursive.
Sincewedon’t have all day, let’s expand <expression> into <variable>
and choose x again.

Since no nonterminals remain, we now know that λx.x is a valid
lambda calculus program. In fact, it’s the identity functionwe discussed
before.
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λx.x

Parsing

If you think about the kind of sentence generation we did above as a
function, at a high level, it would look something like this (pay attention
to the parameters and return types):

Sentence generate(Grammar g) {
// algorithm

}

Parsing is, in some ways, the converse:

bool parse(Sentence s, Grammar g) {
// algorithm

}

In other words, instead of generating a sentence in a grammar, a
parser recognizes whether a sentence belongs to a grammar. If a sentence can
be generated from a grammar, parse returns true. If a sentence cannot
be generated, parse returns false.

In practice, we often expand the definition of parse a tad so that,
if parse would return true, it returns a derivation, otherwise it returns
null.

For example, we already know that λx.x parses, but what does its
derivation look like? (Fig. 8)

Figure 8: Derivation of the expression
λx.x.

In programming languages, a derivation has a special name: we call
it a syntax tree, because it shows how the parts of a program are related
to each other. Understanding how a lambda expression parses will help
you understand how you can “compute” things using it.

Precedence and Associativity

A few little details often trip up newcomers to the lambda calculus.
These details rely on concepts called precedence and associativity.

The dictionary defines “precedence” as the condition of being more
important than other things, and this is essentially the same idea when
we talk about languages. Precedence in a programming languagemeans
that certain operations are evaluated before others. Using algebra again
as an example, this should already be familiar to you. For example, you
know that the algebraic expression

x + y * z

needs to be evaluated by first multiplying y and z, then finally by
adding x to the product. Without the rule that says that multiplication
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has higher precedence than addition, the above expression would be
ambiguous, because it could be parsed in one of two ways (Fig. 9)

Figure 9: Without precedence, you’d
have multiple derivations of the expres-
sion x + y * z. The left derivation is
the one we want.

You probably recognize that the parse on the left is the correct one,
because it implies that the addition depends on the multiplication, not
that the multiplication depends on the addition.

Therefore, precedence is used to remove ambiguity from a language.
In the lambda calculus, application has higher precedence than abstraction.
This means that if you have an expression like

λx.xx

you should understand it to mean the derivation shown in Figure 10
and not the one shown in Figure 11.

Figure 10: Correct derivation of the
expression λx.xx.

Evenwith precedence, we are occasionally facedwith ambiguity. For
example, the lambda expression

xxx

Should we think of this expression as (xx)x or x(xx)? Both forms
utilize application. We know that application has higher precedence
than abstraction, but there’s no abstraction here. Just two different ways
to apply the application rule. Associativity solves this problem.

Associativity rules tell us, in cases where the precedence is the same,
which parse we should choose.

Application is left-associative. Therefore, we group application expres-
sions to the left ((xx)x) instead of to the right (x(xx)).

Figure 11: Incorrect derivation of the
expression λx.xx.

We also have the same problemwith lambda abstractions. For exam-
ple,

λx.xλx.x

Should we interpret this expression to mean λx.(xλx.x) or
(λx.x)(λx.x)? In other words, how much of the sentence is included
in the expression that comes after the first period?

Abstraction is right-associative. I like to think of this as meaning that
“the period is greedy.” The expression after the period extends as far
to the right as makes sense logically. So the correct interpretation is
actually λx.(xλx.x).

These rules take a little time to internalize, but after some practice,
you will eventually get the hang of them.
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In our second reading on the lambda calculus, we finish up discussing
syntax and move on to the semantics of the language.

Ambiguity

In part 1, we looked at an expression λx.xx and askedwhat its derivation
tree should look like. Should it look like the tree in Figure 12 or the tree
in Figure 13?

Figure 12: Correct derivation of the
expression λx.xx.

Figure 13: Incorrect derivation of the
expression λx.xx.

I told you that, because abstraction is right-associative, the correct in-
terpretation is the tree shown in Figure 12.

But what if you wanted to encode the second tree as a lambda pro-
gram? Unless you write your program as separate pieces, such as

a is λx.x

and

b is x

such that the whole program is

ab

then there does not appear to be a way to encode the second tree using
the syntaxwe are given. Adding parentheses to the language solves this
problem.

Parentheses

Parentheses remove ambiguity. Let’s start by introducing a simple ax-
iom into our system:

[[(<expression>)]] ≡ <expression>

This axiom says that “the meaning of” (the part inside the [[ ]] sym-
bols) any expression enclosed in parentheses “is identical to” (≡) that
same expression without parentheses. With this rule, you can feel free
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to surround an expression with parens. When an expression would not
be made ambiguous by doing so, you can also remove them.

Let’s augment our grammar so that we don’t run into any more am-
biguity traps.

<expression> ::= <variable>
| <abstraction>
| <application>
| <parens>

<variable> ::= x
<abstraction> ::= λ<variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)

Now we can avoid the problem with λx.xx. If we write λx.xx, the
interpretation, because abstraction is right associative, is:

and if we write (λx.x)x then the interpretation is

It is conventional, among people who use the lambda calculus, to
dropparenthesiswhenever an interpretation is unambiguous. Googling
for lambda expressions will often turn up scads of examples that omit
parens. When you are aware of this fact, many of these examples will
be easier to interpret.

Other extensions

Additional variables—in other words, not limiting ourselves to just the
variable x—makes the grammar easier to work with. Here is our gram-
mar augmented with additional variables:
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<expression> ::= <variable>
| <abstraction>
| <application>
| <parens>

<variable> ::= α ∈ { a . . . z }
<abstraction> ::= λ<variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)

where, hopefully, it is clear that α ∈ { a . . . z } denotes any letter. E.g.,
any letter could be x, or y, or b, or g, etc.

Finally, to make the lambda calculus more immediately useful, let’s
add one more rule, <arithmetic>. Note that this rule is not strictly re-
quired, because although it may not be apparent to you, arithmetic can
be encoded using all of the pieces we’ve already discussed. But learning
those encodings can be difficult and they are not required to understand
the lambda calculus, so we will put them off until later.

An example of arithmetic of the kindwe’re talking about might be an
expression like 1 + 1. The expression 1 + 1 is in infix form, because the
operator (+) is in between the operands (1 and 1). You are accustomed
to infix notation because of years of practice, but from a computational
standpoint, it is a little bit of a hassle toworkwith. Instead, wewill write
all arithmetic in prefix form, which is easier to manipulate programmat-
ically. In prefix form,

• The entire expression is enclosed within parentheses.

• The operator is the first term written inside the parentheses.

• All subsequent terms written after the operator, but still within the
parentheses, are operands.

Formally,

<arithmetic> ::= (<op> <expression> . . . <expression>)

For example, 1 + 1 is written as (+ 1 1). Another example is c ÷
z, which is written (÷ c z).

What is <op>? A simple formulation might include just +, -, ×, and
÷. I will stick to + and - in this class.

One nice thing about prefix form, which is why we’re using it here,
is that the order of operations is very clear. For example, with a lit-
tle practice, you should have no difficulty computing (+ 3 (* 5 4)).
Recall that the equivalent expression in “normal” arithmetic might be
written as 3 + 5 * 4, which is ambiguous if you don’t remember your
precedence and associativity rules from algebra class.

Here’s an updated grammar.
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<expression> ::= <value>
| <abstraction>
| <application>
| <parens>
| <arithmetic>

<value> ::= v ∈ N
| <variable>

<variable> ::= α ∈ { a … z }
<abstraction> ::= λ<variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)
<arithmetic> ::= (<op> <expression> . . . <expression>)
<op> ::= o ∈ { +, - }

Finally, notice that I added one more component, called <value>.
What is <value>? In this language, <value> is either a number or an
<variable>.

You can see why I don’t introduce these complications all up front:
the grammar is starting to look a little hairy. Still, if you remember that
there are essentially three parts to the lambda calculus, variables, abstrac-
tions, and applications, you will be fine. To recap, we added:

1. Parentheses to remove ambiguity.

2. Extra variables.

3. Simple arithmetic in prefix form.

Abstract syntax

One of the tasks newcomers to the lambda calculus most struggle with
is identifying parts of an expression. Before we talk about what the
lambda calculus means, let’s expand on our parsing skills. Given a
grammar and and expression, by nowyou canprobably giveme aderiva-
tion tree for that expression, or you can tell me that the expression is not
a valid sentence in the language defined by the grammar. However, al-
though derivation trees are useful, they are also cumbersome. They fo-
cusmore on how an expression is derived and less onwhat a sentence means.
Although the two are clearly related in someways, sometimes we really
just want to understand an expression’s meaning.

When we want to understand the meaning of a sentence, we usually
turn to an alternative kind of parse tree called an abstract syntax tree or
AST. Abstract syntax makes the meaning of an expression quite clear.
The term abstract means that we no longer care about all the details of
a language’s syntax; instead, we focus on the most important content.
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Typically, the content we care about is data and operations. In an AST,
interior nodes are operations and leaf nodes are data.

As an example, let’s revisit the simple calculator grammar shown in
one of our previous readings.

<e> ::= 0 | 1 | (<e> + <e>) | (<e> - <e>) | (<e> * <e>)

Suppose we have the expression ((1 + (1 * 0)) - 1). It has the
following derivation:

<e>

<e>

<e>

1

+ <e>

<e>

1

* <e>

0

- <e>

1

Instead of filling our tree with <e>, let’s define our tree purely in
terms of our three operations, +, -, and *, and our two number liter-
als, 0 and 1. If you need a little more precision than this, imagine we’re
using the following type definition from ML.

type Expr =
| Zero
| One
| Addition of Expr * Expr
| Subtraction of Expr * Expr
| Multiplication of Expr * Expr

The top level operation in our derivation is subtraction, so our new
tree will start like this:

-

… …

The expression on the left of the subtraction is addition, and the ex-
pression on the right of the subtraction is 1.

-

+

… …

1
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The expression on the left of the addition is 1, and the expression on
the right of the addition is multiplication.

-

+

1 *

… …

1

The expression on the left of the multiplication is 1, and the expres-
sion on the right of the multiplication is 0.

-

+

1 *

1 0

1

Observe that the meaning of this expression is much clearer. As
noted before, all of the data is at the leaves and all of the operations
are in the interior.

A big reason why we like ASTs is that they suggest a natural pro-
cedure for evaluating an expression: any operator whose operands are
data can be evaluated. See if you can evaluate the tree above from the
“bottom up.” 37 Since you already know how to perform arithmetic, I 37 Hint: the only operation whose

operands are data is *. After evaluating
*, redraw the tree, replacing the *
subtree with the result.

hope you’ll see that ASTs provide additional clarity about what to do
with an expression. As you shall see, we will rely on ASTs to aid our
understanding of the meaning of lambda calculus expressions.

Semantics of the Lambda Calculus

Semantics is the study of meaning. In the context of programming lan-
guages, what we usually care about is how an expression can be con-
verted into a sequence of mechanical steps that can be performed by a
machine.

So how do we interpret the meaning of a lambda expression?
Unfortunately, the meaning of the word “interpret” is unclear. There

are two meanings for the word “interpret”:

1. To understand.

2. To evaluate.
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In programming languages, andmore generally in computer science,
we tend to favor the latter definition of the word “interpret,” i.e., to
evaluate. Why? Because evaluation is a process that we can carry out
on a machine.38 In a well-designed programming language, there is 38 Maybe someday our study of artificial

intelligence will allow computers to
“understand” things, but we’re not
there yet. Part of the difficulty may
be that we don’t really know what
“understanding” itself means.

no room for ambiguity. Precision is what sets programming languages
apart from natural languages. It is why we can precisely describe pro-
grams and run them billions of times without error. But it also means,
because they are so different from natural languages, that they are usu-
ally harder to learn.

Evaluation via term rewriting

The lambda calculus is an example of a term rewriting system. You’ve
seen a term rewriting system before. The system of mathematics you
learned in high school—algebra—is a term rewriting system. The big
idea behind term rewriting systems is that, by following simple substi-
tution rules, you can “solve” the system. In algebra, wemix term rewrit-
ing (substitution) and arithmetic (e.g., 1 + 2) to solve for the value of
a variable.

The amazing and surprising fact about the lambda calculus is that
term rewriting is sufficient to compute anything. Yes, really, all you need
to do is follow a few simple rewriting rules, just like in algebra, and you
don’t even need the arithmetical part.

That said, if you intend to compute “interesting” things—the kinds
of programs we normally write—the language is inconvenient to work
with. Although it is not as primitive as a Turing machine, it’s pretty
darned primitive. Alonzo Church’s contribution was to show that the
functionswemost care about—the ones that are computable in principle—
can all be written as lambda expressions. In this class, I prefer that you
not have to work at such a primitive level, and so our version of the
lambda calculus has “first class” support for arithmetic (<arithmetic>).
Without it, writing useful programs requires a lot of work, but this one
simple extension makes the language useful without sacrificing much
of its simplicity.

There are essentially two rewriting rules in the lambda calculus. To
understand them, I need to introduce few things first: equivalence and
bound/free variables.

Equivalence

In the lambda calculus, we say that two expressions are equivalentwhen
they are lexically identical. In other words, when they have exactly the
same string of characters. For example, the expressions λx.x and λy.y
mean the same thing, but they are not equivalent because they literally
have different letters in them. λx.x and λx.x are equivalent, however,



74

because they are exactly the same.
We often talk a little informally about equivalence and you might

hear someone say that λx.x and λy.y “are equivalent.” What theymean
is that, after rewriting, the two expressions can be made equivalent.

Bound and free variables

Depending on where a variable appears in a lambda expression, it is
either bound or free.

What is a bound variable? A bound variable is a variable named in a
lambda abstraction. For example, in the expression

λx.<expression>

where <expression> denotes some expression (that I don’t care about
at the moment), and where x is the bound variable. How do we know
that x is bound? Well, that’s precisely what a lambda abstractionmeans.
You can read the expression λx.<expression> literally as saying “the
variable x is bound in expression <expression>.”

x is a variable, and when x is used inside of <expression>, its value
takes on whatever value is given when the lambda abstraction is eval-
uated. Lambda abstractions are the precise mathematical meaning of
what we’re talking about when we define a function in a conventional
programming language. To give you an analogy in a language with
which you might be more familiar (Python), you can informally think
of the above expression to mean almost exactly the same thing as the
following program

def foo(x):
<expression>

except that in the lambda calculus, functions don’t have names (i.e., no
foo).

Now it should make sense to you when I say that x is a bound vari-
able. When we call foo, for example, foo(3), we know that wherever
we see x in the function body, we should substitute in the value 3. Let’s
say we have the Python program:

plus_one(x):
return x + 1

Then the expression

plus_one(3)

means

3 + 1
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Until we actually call the function, x could pretty much be anything;
it’s just a parameter. Its value is tied to the calling of the function.

Back to the lambda calculus. In the following expression,

λx.x

all instances of x refer to the same value. How do we know? Because
the lambda abstraction tells us that the value of any x within its scope
(remember: abstraction is right-associative) is bound to the value of the
parameter x.

What about the following expression?

λx.y

The lambda abstraction tells us that x is bound but it says nothing
about y. In fact, we can’t really make any assumptions about y. There-
fore, we call y a free variable.

Tounderstand a lambda expression, youmust always determinewhether
every variable is bound or free. Be careful! Consider the following ex-
pression:

λx.λy.xy

Both x and y are bound. Why? Let’s rewrite using parens. Let’s start
with the rightmost lambda. We know, because of right-associativity,
that everything to the right of the last period must belong to the right-
most lambda. So,

λx.λy.(xy)

We also know that everything to the right of the leftmost periodmust
belong to the first lambda.

λx.(λy.(xy))

Is the rightmost y bound or free? It is bound because it is within the
scope of the λy.___ abstraction. What about the rightmost x? It is also
bound, because it is within the scope of the λx.___ abstraction. If you
don’t believe me, just look at the outermost parens:

λx.(... x ...)

Here’s a more complicated example with a free variable:

(λx.x)y

Can you spot which one is free? 39 39 It’sy.

One more:
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λx.λx.xx

Which variables are bound?
In this case, all the xes you see are bound. However, there are two

x variables. Let’s put in some parens to make the expression easier to
understand.

λx.(λx.(xx))

So both x values are within the scope of both lambda abstractions. To
which abstraction is x bound? In the lambda calculus, the last abstraction
wins. Therefore, it is as if λx.(λx.(xx)) were written

λy.(λx.(xx))

and to give you an intuitive sense of this, this is more or less equivalent
to the following (perfectly valid but slightly unusual) Python program,

def yfunc(y):
def xfunc(x):

return x(x)
return xfunc

but, of course, without the function names.

Reductions

The rules used to rewrite expressions in the lambda calculus are called
reduction rules. Reductions are the heart of what it means to evaluate, or
more colloquially, “to execute,” a lambda expression.

α Reduction

The first rewriting rule is called alpha reduction. Alpha reduction is a
rule introduced to deal with ambiguity surrounding the use of vari-
ables. Specifically, alpha reduction relies on the property that, in the
lambda calculus, the given name of a bound variable largely does not
matter.

Let’s look at a concrete example. Remember the identity function?

def identity(x):
return x

It returns whatever we give it. Here’s a Python interpreter session:
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$ python
Python 2.7.15 (default, Aug 22 2018, 16:36:18)
[GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> def identity(x):
... return x
...
>>> identity(3)
3

Hopefully no surprises there, right? What if, after we explored the
above definition of identity, I asked you what the following function
meant:

def identity2(z):
return z

I suspect that youmight be a little annoyed. Why? Because obviously
identity1 and identity2 are the same function.

Remember, though, that in the lambda calculus, we have a strict no-
tion of equivalence. Two expressions are equivalent if and only if they
are exactly the same string. So even though identity in the lambda
calculus is:

λx.x

and identity2 in the lambda calculus is:

λy.y

andwe can sort of squint and see that they’re the same, that’s not enough.
We have to prove it.

α Equivalence

The notation [a/b]<expression> means “replace the variable b with
variable a in <expression>.” To perform alpha reduction, we rely on
the following property of the lambda calculus, which is called “alpha
equivalence”:

[[λx1.e]] =α [[λx2.[x2/x1]e]]

where x1 and x2 are variables, and e is an expression.
This property says that the meaning of the expression of the form

λx1.e is the same when you replace it with an expression of the form
λx2.[x2/x1]e. The two expressions are “alpha equivalent” (that’s what
=α means). Since [x2/x1] is not a valid lambda-calculus expression, you
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must continue replacement of x1 with x2 wherever you find it in e. You
continue doing this until you can proceed no further with substitution.

Here’s a proof that the two expressions are the same.

λx.x given
[y/x] λx.x alpha reduce x with y
λy.[y/x]x step 1: rename outer x and continue to inner expression
λy.y step 2: rename inner x

Therefore, λx.x =α λy.y.
I mentioned before that sometimes you can “proceed no further with

substitution”. Substitution can be “blocked” by nested lambdas. Recall
the expression from before:

λx.λx.xx

You might be wondering: is this expression equivalent to λy.λx.yy?
This is a perfect time to do alpha reduction. Let’s replace x with y.

λx.λx.xx given
[y/x] λx.λx.xx alpha reduce x with y
λy.[y/x] λx.xx step 1: rename outer x and continue to inner expression
λy.λx.xx done (substitution blocked by λx)

We cannot rename the x inside the inner expression because it is a
different x than the outer x. The inner lambda “redefines” x. Therefore
λx.λx.xx is not equivalent to λy.λx.yy, at least not using alpha reduc-
tion.

When two expressions can be made equivalent using alpha reduc-
tion, we call them alpha equivalent.

β Reduction

There is one other kind of reduction called beta reduction. Beta reduc-
tion is the beating heart of the lambda calculus because it is, essentially,
what it means to call a function. We refer to calling a lambda function
application.

The simplest possible example uses the identity function:

λx.x

Let’s “call” this function with a value. Say, y.

(λx.x)y

Recall that we use parentheses to make this expression unambiguous.
At a high level. This expression has two parts: left and right. The left

side is λx.x. The right side is y. How do we know? The parens tell us.
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What is the one grammar rule in the lambda calculus that lets us in-
terpret an expression with a left part and a right part? It’s this rule:

<application> ::= <expression><expression>

Colloquially, we call the left part the function and the right part the
argument. Why? Because those two parts work just like the function
and argument parts you might see in a conventional programming lan-
guage.

(λx.x)y

works just like

def identity(x):
return x

identity(y)

because we expect to get y back when we call the identity function
with y as an argument40. 40 The exact Python equivalent to

(λx.x)y is actually (lambda x: x)(y).
Python will complain that y is not de-
fined if you do not define it somewhere;
the lambda calculus is less strict because
it doesn’t really care if y is free. Python
is an eager language, which essentially
means that variables can never be free.

β Equivalence

Beta reduction is a substitution rule that achieves the same effect as call-
ing a function. We again use the substitution operation, [a/b] cwhich
means “substitute variable bwith expression a in the expression c”, but
in the case of beta reduction, substitution eliminates both the function
(the lambda abstraction) and its argument.

We rely on the followingproperty, which is called “beta equivalence”:

[[(λx1.e)x2]] =β [[[x2/x1]e]]

where x1 is a variable, and x2 and e are expressions.
This property says that an expression of the form (λx1.e)x2 has the

same meaning as an expression of the form [x2/x1]e. The two expres-
sions are “beta equivalent” (that’swhat=β means). Since [x2/x1]means
”substitute x2 for x1 in e” and is not a valid lambda calculus expression,
you must continue replacement until you can proceed no further. As
with alpha reduction, redefinition of a variable inside a lambda “blocks”
substitution.

Example:

(λx.x)y given
([y/x] x) β-reduce x with y; step 1: eliminate abstraction and argument
(y) step 2: replace x with y
y eliminate parens (because <expression> = (<expression>))
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Let’s look at another example.

(λx.xx)z given
([z/x] xx) β-reduce x with z; step 1: eliminate abstraction and argument
(zz) step 2: replace x with z
zz eliminate parens

In the fourth step, we beta reduce inside the application xx because
[z/x]<expression><expression>means ([z/x]<expression>)([z/x]<expression>).

Reduction order

In the lambda calculus, the order of reductions does not matter.41 You 41 This idea is called the Church-Rosser
Theorem.are already familiar with this idea. Suppose I ask you to evaluate the

polynomial 2x2 + y/3, where x = 1 and y = 3. Does it matter which
variable you substitute first? Clearly the answer is no. We could first
substitute x to obtain 2 + y/3 and then y, yielding 2 + 1. Or we could
substitute y to obtain 2x2 + 1 and then x, also yielding 2 + 1. The result
is the same. A term rewriting systemwhose substitution order does not
matter is confluent.

Likewise, the order of reductions does not matter in the lambda cal-
culus. The lambda calculus is confluent. Let’s look at an example of an
expression where there is a choice about which reduction we can apply.

(λx.y)((λa.aa)(λb.bb))

It’s probably hard for you to see where reductions can be applied in
the above expression. Things are greatly clarified by drawing a lambda
expression’s abstract syntax tree. Let’s start by producing a derivation
tree, then converting it into an abstract syntax tree like we did before
with our arithmetic expression.42 42 You will eventually be able to produce

ASTs directly from an expression
without first having to draw a derivation
tree.
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<expr>

<app>

<expr>

<abs>

λ<var>.

x

<expr>

<var>

y

<expr>
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<expr>

<abs>

λ<var>.

a

<expr>

<app>

<expr>

<var>

a

<expr>

<var>

a

<expr>

<abs>

λ<var>.

b

<expr>

<app>

<expr>

<var>

b

<expr>

<var>

b

That’s a lot of drawing! Hopefully the AST is simpler and clearer. As
before, we need to define our AST’s operations and data. Suppose we
use the following ML type definition for our tree, where a char is data
and everything else is an operation of some kind.

type Expr =
| Var of char
| Abs of char * Expr
| App of Expr * Expr

Applying the above definition to our expression, we obtain the fol-
lowing AST.
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App

Abs

x Var

y

App

Abs

a App

Var

a

Var

a

Abs

b App

Var

b

Var

b

Much clearer, right? As youwill see, I like to write lambdaASTswith
a shorthand that makes them even easier to jot down. Everywhere we
see Var, we simply replace it with its variable. Everywhere we see Abs,
we write λ. Finally, everywhere we see App, we write @.43 43 At-plication. Get it? No? OK, I think

it’s only amusing to me. Still, it’s easier
to write.

@

λ

x y

@

λ

a @

a a

λ

b @

b b

Identifying reducible expressions

Reducible expressions, or redexes for short, are the parts of a lambda ex-
pression where we can apply β-reductions. To find a redex, convert the
expression to anAST and look for an applicationwhose left side is an ab-
straction. If you think about this for a moment, this is like saying “look
for a function definition that is being called.” Here’s the same ASTwith
all the reducible applications highlighted.
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@

λ

x y

@

λ

a @

a a

λ

b @

b b

Normal form

When do we stop doing reductions? We stop when there are no beta re-
ductions left to do. One easyway to see that an expression can no longer
be reduced is to look for redexes using our AST-drawing procedure. If
there are no redexes, the expression is what we call a normal form.

For example, the following expressions are already in normal form:
x
xx
λx.y
xz

However, the following are not:

(λx.x)(λx.x)
(λx.λx.z)y
y(λx.xx)(λx.xx)

Try reducing the above expressions yourself. 44 44 Thethirdexpressionhasnonormalform.

Normal order

In the tree above, the “outermost leftmost” reduction applies the argu-
ment ((λa.aa)(λb.bb)) to the function (λx.y).45 Always following 45 “Outer” means up the tree in our

diagrams.the outermost leftmost beta reduction, at every step, is what we call the
normal order reduction.

Let’s reduce this expression using the normal order.

(λx.y)((λa.aa)(λb.bb)) given
([((λa.aa)(λb.bb))/x] y) β reduce ((λa.aa)(λb.bb)) for x
y substitute and done
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Applicative order

In the tree above, the “innermost leftmost” reduction applies the argu-
ment (λb.bb) to the function (λa.aa).46 Always following the inner- 46 “Inner” means down the tree in our

diagrams.most leftmost beta reduction, at every step, is whatwe call the applicative
order reduction.

Let’s reduce this expression using the applicative order.
(λx.y)((λa.aa)(λb.bb)) given
(λx.y)(([(λb.bb)/a] aa)) β reduce (λb.bb) for a
(λx.y)((λb.bb)(λb.bb)) substitute
(λx.y)((λa.[a/b] bb)(λb.bb)) α reduce a for b
(λx.y)((λa.aa)(λb.bb)) uh-oh... we’re back to where we started
. . .

In this case, the applicative order reduction does not terminate. If
you were following along, though, you know that we proved that the
expression has a normal form because we were able to reduce it using
the normal order.

Confluent, but with a catch

If an expression has a normal form, reductions can be applied in any or-
der. Except, as you saw above, that’s not the entire story. When we say
“reductions can be applied in any order,” we mean that you can never
derive an incorrect expression by your choice of β reductions. Never-
theless, an unwise choicemay reproduce an expression you had already
evaluated.

Fortunately, there is an easyway to avoid the pain: choose the normal
order. If a normal form exists for expression e, then the normal order
reductionwill find it. By contrast, if a normal form exists for expression
e, then the applicative order reduction may find it.

You might be wondering why we even care about applicative order.
It turns out that applicative order is equivalent to the order employed
by most ordinary programming languages like Java and C! We call this
kind of program evaluation eager evaluation. Very few languages utilize
the normal order because it is difficult to implement, however there are
examples. Haskell, for example, uses the normal order utilizing a form
of evaluation we call lazy evaluation.

Nontermination

You might be thinking “I’m so glad I read this far in the course packet.
Now all of my lambda calculus reductions will terminate!” I have sad
news for you. As with ordinary programming languages, it is possi-
ble to write lambda expressions whose reductions will never terminate,
regardless of your choice of reduction order. Consider the expression
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(λa.aa)(λb.bb). Since there is only one redex, the normal order and
the applicative order are the same. Go ahead, give the reduction a try.
I’ll wait.47 47 Forever.

When we say that an expression does not have a normal form, non-
termination is whatwemean. The expression (λa.aa)(λb.bb) does not
have a normal form.

Remember, the lambda calculus was designed to capture all the es-
sential parts of computation. If it is possible towrite an infinitely-looping
program like the following in an ordinary language,

while(true) {}

then we should not be surprised that we are also able to write nonter-
minating programs in the lambda calculus.





Higher-Order Functions

Now that you have some experience with the lambda calculus, let’s re-
turn to F#. F# semantics are strongly influenced by the lambda calculus.
Put another way, when the designers of F# asked themselves what the
language should be capable of doing, the answer was “whatever the
lambda calculus can do.”48 48 Strictly speaking, F# uses the simple

imperative polymorphism model invented
by Andrew K. Wright in 1995. This
model is less expressive than the or-
dinary lambda calculus, but has the
advantage of preventing certain logical
paradoxes.

For example, in the lambda calculus, we saw that we could apply
function definitions to other function definitions.

(λa.a)(λb.b)

The above evaluates to

λb.b

Can we also pass definitions to definitions in F#? You bet!49 49 Note that my F# example is slightly
different than the lambda calculus
expression. The equivalent F# would be
(fun a -> a)(fun b -> b), but F#’s
type system is not capable of handling
such expressions. The reason, called
value restriction, is beyond the scope
of this course. If you’re enjoying F#
and you want to dig deeper into its
workings, see if you can understand
why F#’s compiler makes this choice.

> let id x = x;;
val id: x: 'a -> 'a

> let plusone n = n + 1;;
val plusone: n: int -> int

> id plusone;;
val it: (int -> int) = <fun:it@35>

The reason is that in a functional programming language, functions
are values. Since functions take values as parameters, this means that in
F#, a function can take a function as an argument.50 Any language that 50 As long as the expression type-checks,

of course.treats functions as values is said to have first-class functions. First-class
functions enable us to completely rethink how we structure programs.

As discussed earlier, we avoid looping constructs like for and while
in F#, and often instead use recursion instead. Recursion is powerful,
and it can express any kind of loop you want. But if you’re like me,
you’ve probablymade themistake of forgetting ormessing up your base
case, causing your program to run forever. For some programs, running
forever is desirable.51 More often, we do not want a loop to run forever. 51 Ideally, a web server should run

forever. It waits until it receives a web
request and then, after sending the
webpage to the user, goes back to
waiting.
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Instead, we would like our algorithm to process every item in a finite
collection like a list or an array. Processing every element in a finite
collection is called bounded iteration. F# provides two features that rely
on first-class functions whichmake it easier to write algorithms that use
bounded iteration.

The Map Operation

1
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2

4

5

2

4

3

5

6

set A set B

f

Figure 14: f is defined as fun x -> x +
1. When given the mapping function f
and the set A, the map operation yields
set B. Note that this idea is related to the
mathematical definition of a map, but is
not exactly the same.

Suppose you want to convert every number in a list into a string. You
can probably imagine how to do this using a for or a while loop. This is
an example of bounded iteration because you know exactly how much
work you need to do. The work is proportional to the length of the list.

There’s another quality to this operation: it takes n elements and pro-
duces n elements. Whenever you need a bounded iteration that takes n
elements and produces n elements, use map.

> List.map (fun x -> x.ToString()) [11;22;33;44];;
val it : string list = ["11"; "22"; "33"; "44"]

Observe that the type of the output need not be the type of the input.
The expression above converts int values into string values.

Let’s try to understand the type signature for List.map:

('a -> 'b) -> 'a list -> 'b list

Wewill step through this definition, bit by bit. The parens tell us that
the first argument’s type is a 'a -> 'b. Right away, because the type
contains an ->, we know that it is a function. What kind of function?
A function from some unknown type 'a to some other unknown type 'b. It
is entirely plausible that 'a and 'b are the same type (e.g., int), this
type definition tells us is that they don’t have to be. We call this first
parameter to map the mapping function. It “converts” or “maps” a given
value to another value.

The next parameter has the type 'a list. This parameter is the set of
inputs. Because we used List.map in our example, the collection must
be a list.

Finally, the last type is 'b list, which is the type of the function’s
output. Hopefully this last type strikes you as intuitive: if you call a
mapping function on a list, you will get a get a list back. Those two lists
have different types because the mapping function can return any type.
In our example, we converted a list of ints into a list of strings.

What makes map such a powerful idea is that it completely decouples
the traversal of the list from the procedure that operates on the list’s
elements.

Why not try to see if you understand this idea? Trywriting an expres-
sion that converts a list of integer strings into a list of integers; in other
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words, the converse of the problem above. Your expression should look
a little like:

> List.map ( ... your function here ... ) ["11";"22";"33";"44"];;
val it : int list = [11;22;33;44]

The Fold Operation

Another common form of iteration is to compute a single value from ev-
ery element of a collection. This is different than map because although
our operation still takes n values, it returns only a single value. You’ve
almost certainly done something like this before. Here, we sum all of
the elements in a list.
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0 + 1
set A g

g

g

g

g

15

Figure 15: g is defined as fun acc x
-> acc + x. When given the folding
function g, the set A, and the initial value
0, the fold operation yields 15.

> let sum = List.fold (fun acc x -> acc + x) 0 [1;2;3;4;5];;
val sum: int = 15

Let’s look at fold’s type signature:

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

The first parameter, called the folding function, takes two values, 'a
and 'b, and returns 'a. In our example fold above, the function takes
two values and returns their sum. The first parameter to a folding func-
tion is called the accumulator: it’s where we store the result of the opera-
tion from one iteration of fold to the next. The second parameter to the
folding function is a single element, taken from a list.

The second parameter to fold is the initial value of the accumulator.
Since we want to sum, in this case, we set our initial value to 0.

The last parameter to fold is the list. This is where the argument
for the folding function’s 'b parameter comes from. Finally, the return
value is a 'a, because that’s the type of our accumulator. When there
are no more elements in the list, the accumulator is returned.

Here, we convert strings into numbers and sum them:

> List.fold (fun acc x -> acc + int x) 0 ["1";"2";"3";"4";"5"];;
val it : int = 15

fold is a remarkably flexible function. It is not limited to lists. One
can fold arrays, trees, graphs, etc. In fact, with a little cleverness, one
can even implement map using fold.52 52 If you want a little challenge, see if

you can figure it out!The foldwe’ve discussed here is technically a form called “fold left.”
“Left” refers to the fact that fold works through the elements of a list
from the beginning to the end. We usually visualize the beginning of a
list as being on the left and the end on the right. Folding “right” does
the converse, taking elements from the end first.
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In LISP, the original functional programming language, fold is called
reduce. When you pair mapping and folding together, you get a form
of computation called map-reduce. Google’s MapReduce framework,
which is a platform for fault-tolerant, massively parallel computation is
so called because all computation must be in map-reduce form.

Forward pipe

Forward pipe, |>, is my single favorite feature of F#. It allows one to
build sophisticated data-processing pipelines that are easy to write and
easy to read. |> passes the result of the left side to the function on the
right side. For example, instead of writing:

List.map (fun x -> x + 1) [1;2;3;4]

one can write:

[1;2;3;4] |> List.map (fun x -> x + 1)

I find the latter easier to read, but the benefit really becomes apparent
when one chains multiple operations.

> ["1";"2";"3";"4"]
- |> List.map (fun x -> int x)
- |> List.map (fun x -> x + 1)
- |> List.fold (fun acc x -> acc * x) 1
- ;;
val it: int = 120

The above converts each string containing an integer into an integer,
adds one to each, and then multiplies them all together.



Beating the Averages

By Paul Graham. Originally published in April, 2001. Revised in April, 2003.
This article is derived from a talk given at the 2001 Franz Developer Sympo-
sium.

In the summer of 1995,my friendRobertMorris and I started a startup
called Viaweb. Our plan was to write software that would let end users
build online stores. What was novel about this software, at the time,
was that it ran on our server, using ordinaryWeb pages as the interface.

A lot of people could have been having this idea at the same time, of
course, but as far as I know, Viawebwas the firstWeb-based application.
It seemed such a novel idea to us that we named the company after it:
Viaweb, because our software worked via the Web, instead of running
on your desktop computer.

Another unusual thing about this software was that it was written
primarily in a programming language called Lisp. It was one of the first
big end-user applications to be written in Lisp, which up till then had
been used mostly in universities and research labs.53 53 Viaweb at first had two parts: the ed-

itor, written in Lisp, which people used
to build their sites, and the ordering
system, written in C, which handled or-
ders. The first version was mostly Lisp,
because the ordering system was small.
Later we added two more modules,
an image generator written in C, and a
back-office manager written mostly in
Perl.
In January 2003, Yahoo released a

new version of the editor written in
C++ and Perl. It’s hard to say whether
the program is no longer written in
Lisp, though, because to translate this
program into C++ they literally had to
write a Lisp interpreter: the source files
of all the page-generating templates are
still, as far as I know, Lisp code. (See
Greenspun’s Tenth Rule.)

The Secret Weapon

Eric Raymond has written an essay called “How to Become a Hacker,”
and in it, among other things, he tells would-be hackers what languages
they should learn. He suggests starting with Python and Java, because
they are easy to learn. The serious hacker will also want to learn C, in
order to hack Unix, and Perl for system administration and cgi scripts.
Finally, the truly serious hacker should consider learning Lisp:

Lisp is worth learning for the profound enlightenment experience you
will have when you finally get it; that experience will make you a better
programmer for the rest of your days, even if you never actually use Lisp
itself a lot.

This is the same argument you tend to hear for learning Latin. It
won’t get you a job, except perhaps as a classics professor, but it will
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improve your mind, and make you a better writer in languages you do
want to use, like English.

But wait a minute. This metaphor doesn’t stretch that far. The reason
Latin won’t get you a job is that no one speaks it. If you write in Latin,
no one can understand you. But Lisp is a computer language, and com-
puters speak whatever language you, the programmer, tell them to.

So if Lispmakes you a better programmer, like he says, whywouldn’t
you want to use it? If a painter were offered a brush that would make
him a better painter, it seems to me that he would want to use it in all
his paintings, wouldn’t he? I’m not trying to make fun of Eric Raymond
here. On the whole, his advice is good. What he says about Lisp is
pretty much the conventional wisdom. But there is a contradiction in
the conventional wisdom: Lispwill make you a better programmer, and
yet you won’t use it.

Why not? Programming languages are just tools, after all. If Lisp
really does yield better programs, you should use it. And if it doesn’t,
then who needs it?

This is not just a theoretical question. Software is a very competitive
business, prone to natural monopolies. A company that gets software
written faster and better will, all other things being equal, put its com-
petitors out of business. And when you’re starting a startup, you feel
this very keenly. Startups tend to be an all or nothing proposition. You
either get rich, or you get nothing. In a startup, if you bet on the wrong
technology, your competitors will crush you.

Robert and I both knew Lispwell, andwe couldn’t see any reason not
to trust our instincts and go with Lisp. We knew that everyone else was
writing their software in C++ or Perl. But we also knew that that didn’t
mean anything. If you chose technology that way, you’d be running
Windows. When you choose technology, you have to ignore what other
people are doing, and consider only what will work the best.

This is especially true in a startup. In a big company, you can do
what all the other big companies are doing. But a startup can’t do what
all the other startups do. I don’t think a lot of people realize this, even
in startups.

The average big company grows at about ten percent a year. So if
you’re running a big company and you do everything the way the av-
erage big company does it, you can expect to do as well as the average
big company—that is, to grow about ten percent a year.

The same thing will happen if you’re running a startup, of course.
If you do everything the way the average startup does it, you should
expect average performance. The problem here is, average performance
means that you’ll go out of business. The survival rate for startups is
way less than fifty percent. So if you’re running a startup, you had better
be doing something odd. If not, you’re in trouble.
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Back in 1995, we knew something that I don’t think our competitors
understood, and few understand even now: when you’re writing soft-
ware that only has to run on your own servers, you can use any language
you want. When you’re writing desktop software, there’s a strong bias
toward writing applications in the same language as the operating sys-
tem. Ten years ago, writing applications meant writing applications in
C. But with Web-based software, especially when you have the source
code of both the language and the operating system, you can use what-
ever language you want.

This new freedom is a double-edged sword, however. Now that you
can use any language, you have to think about which one to use. Com-
panies that try to pretend nothing has changed risk finding that their
competitors do not.

If you can use any language, which do you use? We chose Lisp. For
one thing, it was obvious that rapid development would be important
in this market. We were all starting from scratch, so a company that
could get new features done before its competitors would have a big
advantage. We knew Lisp was a really good language for writing soft-
ware quickly, and server-based applications magnify the effect of rapid
development, because you can release software the minute it’s done.

If other companies didn’t want to use Lisp, so much the better. It
might give us a technological edge, andwe needed all the helpwe could
get. When we started Viaweb, we had no experience in business. We
didn’t knowanything aboutmarketing, or hiring people, or raisingmoney,
or getting customers. Neither of us had ever even had what you would
call a real job. The only thingwewere good at waswriting software. We
hoped that would save us. Any advantage we could get in the software
department, we would take.

So you could say that using Lisp was an experiment. Our hypothe-
sis was that if we wrote our software in Lisp, we’d be able to get fea-
tures done faster than our competitors, and also to do things in our
software that they couldn’t do. And because Lisp was so high-level, we
wouldn’t need a big development team, so our costs would be lower.
If this were so, we could offer a better product for less money, and still
make a profit. We would end up getting all the users, and our competi-
tors would get none, and eventually go out of business. That was what
we hoped would happen, anyway.

What were the results of this experiment? Somewhat surprisingly, it
worked. We eventually had many competitors, on the order of twenty
to thirty of them, but none of their software could compete with ours.
We had a wysiwyg online store builder that ran on the server and yet
felt like a desktop application. Our competitors had cgi scripts. And we
were always far ahead of them in features. Sometimes, in desperation,
competitors would try to introduce features that we didn’t have. But
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with Lisp our development cycle was so fast that we could sometimes
duplicate a new feature within a day or two of a competitor announcing
it in a press release. By the time journalists covering the press release
got round to calling us, we would have the new feature too.

It must have seemed to our competitors that we had some kind of se-
cret weapon—that wewere decoding their Enigma traffic or something.
In fact we did have a secret weapon, but it was simpler than they real-
ized. No one was leaking news of their features to us. We were just able
to develop software faster than anyone thought possible.

When I was about nine I happened to get hold of a copy of The Day of
the Jackal, by Frederick Forsyth. The main character is an assassin who
is hired to kill the president of France. The assassin has to get past the
police to get up to an apartment that overlooks the president’s route. He
walks right by them, dressed up as an old man on crutches, and they
never suspect him.

Our secret weapon was similar. We wrote our software in a weird
AI language, with a bizarre syntax full of parentheses. For years it had
annoyed me to hear Lisp described that way. But now it worked to our
advantage. In business, there is nothing more valuable than a technical
advantage your competitors don’t understand. In business, as in war,
surprise is worth as much as force.

And so, I’m a little embarrassed to say, I never said anything publicly
about Lisp while we were working on Viaweb. We never mentioned
it to the press, and if you searched for Lisp on our Web site, all you’d
find were the titles of two books in my bio. This was no accident. A
startup should give its competitors as little information as possible. If
they didn’t know what language our software was written in, or didn’t
care, I wanted to keep it that way.54 54 Robert Morris says that I didn’t need

to be secretive, because even if our
competitors had known we were using
Lisp, they wouldn’t have understood
why: “If they were that smart they’d
already be programming in Lisp.”

The people who understood our technology best were the customers.
They didn’t care what language Viaweb was written in either, but they
noticed that it worked really well. It let them build great looking online
stores literally in minutes. And so, by word of mouth mostly, we got
more andmore users. By the end of 1996 we had about 70 stores online.
At the end of 1997 we had 500. Six months later, when Yahoo bought
us, we had 1070 users. Today, as Yahoo Store, this software continues
to dominate its market. It’s one of the more profitable pieces of Yahoo,
and the stores built with it are the foundation of Yahoo Shopping. I left
Yahoo in 1999, so I don’t know exactly how many users they have now,
but the last I heard there were about 20,000.
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The Blub Paradox

What’s so great about Lisp? And if Lisp is so great, why doesn’t ev-
eryone use it? These sound like rhetorical questions, but actually they
have straightforward answers. Lisp is so great not because of some
magic quality visible only to devotees, but because it is simply the most
powerful language available. And the reason everyone doesn’t use it
is that programming languages are not merely technologies, but habits
of mind as well, and nothing changes slower. Of course, both these an-
swers need explaining.

I’ll begin with a shockingly controversial statement: programming
languages vary in power.

Fewwould dispute, at least, that high level languages are more pow-
erful than machine language. Most programmers today would agree
that you do not, ordinarily, want to program in machine language. In-
stead, you should program in a high-level language, and have a com-
piler translate it into machine language for you. This idea is even built
into the hardware now: since the 1980s, instruction sets have been de-
signed for compilers rather than human programmers.

Everyone knows it’s a mistake to write your whole program by hand
in machine language. What’s less often understood is that there is a
more general principle here: that if you have a choice of several lan-
guages, it is, all other things being equal, a mistake to program in any-
thing but the most powerful one.55 55 All languages are equally powerful

in the sense of being Turing equivalent,
but that’s not the sense of the word
programmers care about. (No one
wants to program a Turing machine.)
The kind of power programmers care
about may not be formally definable,
but one way to explain it would be to
say that it refers to features you could
only get in the less powerful language
by writing an interpreter for the more
powerful language in it. If language A
has an operator for removing spaces
from strings and language B doesn’t,
that probably doesn’t make A more
powerful, because you can probably
write a subroutine to do it in B. But if A
supports, say, recursion, and B doesn’t,
that’s not likely to be something you can
fix by writing library functions.

There are many exceptions to this rule. If you’re writing a program
that has to work very closely with a program written in a certain lan-
guage, it might be a good idea towrite the newprogram in the same lan-
guage. If you’re writing a program that only has to do something very
simple, like number crunching or bit manipulation, you may as well
use a less abstract language, especially since it may be slightly faster.
And if you’re writing a short, throwaway program, you may be better
off just using whatever language has the best library functions for the
task. But in general, for application software, you want to be using the
most powerful (reasonably efficient) language you can get, and using
anything else is a mistake, of exactly the same kind, though possibly in
a lesser degree, as programming in machine language.

You can see that machine language is very low level. But, at least as
a kind of social convention, high-level languages are often all treated
as equivalent. They’re not. Technically the term “high-level language”
doesn’t mean anything very definite. There’s no dividing line with ma-
chine languages on one side and all the high-level languages on the
other. Languages fall along a continuum56 of abstractness, from the 56 Note to nerds: or possibly a lattice,

narrowing toward the top; it’s not the
shape that matters here but the idea that
there is at least a partial order.

most powerful all the way down to machine languages, which them-
selves vary in power.
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Consider Cobol. Cobol is a high-level language, in the sense that it
gets compiled into machine language. Would anyone seriously argue
that Cobol is equivalent in power to, say, Python? It’s probably closer to
machine language than Python.

Or how about Perl 4? Between Perl 4 and Perl 5, lexical closures got
added to the language. Most Perl hackerswould agree that Perl 5 ismore
powerful than Perl 4. But once you’ve admitted that, you’ve admitted
that one high level language can be more powerful than another. And
it follows inexorably that, except in special cases, you ought to use the
most powerful you can get.

This idea is rarely followed to its conclusion, though. After a cer-
tain age, programmers rarely switch languages voluntarily. Whatever
language people happen to be used to, they tend to consider just good
enough.

Programmers get very attached to their favorite languages, and I don’t
want to hurt anyone’s feelings, so to explain this point I’m going to use
a hypothetical language called Blub. Blub falls right in themiddle of the
abstractness continuum. It is not the most powerful language, but it is
more powerful than Cobol or machine language.

And in fact, our hypothetical Blub programmer wouldn’t use either
of them. Of course he wouldn’t program in machine language. That’s
what compilers are for. And as for Cobol, he doesn’t know how anyone
can get anything done with it. It doesn’t even have x (Blub feature of
your choice).

As long as our hypothetical Blub programmer is looking down the
power continuum, he knows he’s looking down. Languages less pow-
erful than Blub are obviously less powerful, because they’re missing
some feature he’s used to. But when our hypothetical Blub program-
mer looks in the other direction, up the power continuum, he doesn’t
realize he’s looking up. What he sees are merely weird languages. He
probably considers them about equivalent in power to Blub, but with
all this other hairy stuff thrown in as well. Blub is good enough for him,
because he thinks in Blub.

When we switch to the point of view of a programmer using any of
the languages higher up the power continuum, however, we find that
he in turn looks down upon Blub. How can you get anything done in
Blub? It doesn’t even have y.

By induction, the only programmers in a position to see all the dif-
ferences in power between the various languages are those who under-
stand the most powerful one. (This is probably what Eric Raymond
meant about Lisp making you a better programmer.) You can’t trust
the opinions of the others, because of the Blub paradox: they’re satis-
fied with whatever language they happen to use, because it dictates the
way they think about programs.
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I know this from my own experience, as a high school kid writing
programs in Basic. That language didn’t even support recursion. It’s
hard to imagine writing programs without using recursion, but I didn’t
miss it at the time. I thought in Basic. And I was a whiz at it. Master of
all I surveyed.

The five languages that Eric Raymond recommends to hackers fall
at various points on the power continuum. Where they fall relative to
one another is a sensitive topic. What I will say is that I think Lisp is at
the top. And to support this claim I’ll tell you about one of the things I
find missing when I look at the other four languages. How can you get
anything done in them, I think, without macros?57 57 It is a bit misleading to treat macros

as a separate feature. In practice their
usefulness is greatly enhanced by other
Lisp features like lexical closures and
rest parameters.

Many languages have something called amacro. But Lispmacros are
unique. And believe it or not, what they do is related to the parentheses.
The designers of Lisp didn’t put all those parentheses in the language
just to be different. To the Blub programmer, Lisp code looks weird. But
those parentheses are there for a reason. They are the outward evidence
of a fundamental difference between Lisp and other languages.

Lisp code is made out of Lisp data objects. And not in the trivial
sense that the source files contain characters, and strings are one of the
data types supported by the language. Lisp code, after it’s read by the
parser, is made of data structures that you can traverse.

If you understand how compilers work, what’s really going on is not
so much that Lisp has a strange syntax as that Lisp has no syntax. You
write programs in the parse trees that get generated within the com-
piler when other languages are parsed. But these parse trees are fully
accessible to your programs. You can write programs that manipulate
them. In Lisp, these programs are called macros. They are programs
that write programs.

Programs that write programs? When would you ever want to do
that? Not very often, if you think in Cobol. All the time, if you think in
Lisp. It would be convenient here if I could give an example of a power-
ful macro, and say there! how about that? But if I did, it would just look
like gibberish to someone who didn’t know Lisp; there isn’t room here
to explain everything you’d need to know to understand what it meant.
In ANSI Common Lisp I tried to move things along as fast as I could, and
even so I didn’t get to macros until page 160.

But I think I can give a kind of argument that might be convinc-
ing. The source code of the Viaweb editor was probably about 20-25%
macros. Macros are harder to write than ordinary Lisp functions, and
it’s considered to be bad style to use them when they’re not necessary.
So every macro in that code is there because it has to be. What that
means is that at least 20-25% of the code in this program is doing things
that you can’t easily do in any other language. However skeptical the
Blub programmer might be about my claims for the mysterious pow-
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ers of Lisp, this ought to make him curious. We weren’t writing this
code for our own amusement. We were a tiny startup, programming as
hard as we could in order to put technical barriers between us and our
competitors.

A suspicious person might begin to wonder if there was some cor-
relation here. A big chunk of our code was doing things that are very
hard to do in other languages. The resulting software did things our
competitors’ software couldn’t do. Maybe there was some kind of con-
nection. I encourage you to follow that thread. There may be more to
that old man hobbling along on his crutches than meets the eye.

Aikido for Startups

But I don’t expect to convince anyone (over 25) to go out and learn Lisp.
The purpose of this article is not to change anyone’s mind, but to reas-
sure people already interested in using Lisp—people who know that
Lisp is a powerful language, but worry because it isn’t widely used. In
a competitive situation, that’s an advantage. Lisp’s power is multiplied
by the fact that your competitors don’t get it.

If you think of using Lisp in a startup, you shouldn’t worry that it
isn’t widely understood. You should hope that it stays that way. And
it’s likely to. It’s the nature of programming languages to make most
people satisfied with whatever they currently use. Computer hardware
changes somuch faster than personal habits that programming practice
is usually ten to twenty years behind the processor. At places like MIT
they were writing programs in high-level languages in the early 1960s,
but many companies continued to write code in machine language well
into the 1980s. I bet a lot of people continued to write machine language
until the processor, like a bartender eager to close up and go home, fi-
nally kicked them out by switching to a RISC instruction set.

Ordinarily technology changes fast. But programming languages are
different: programming languages are not just technology, but what
programmers think in. They’re half technology andhalf religion.58 And 58 As a result, comparisons of program-

ming languages either take the form
of religious wars or undergraduate
textbooks so determinedly neutral that
they’re really works of anthropology.
People who value their peace, or want
tenure, avoid the topic. But the ques-
tion is only half a religious one; there
is something there worth studying,
especially if you want to design new
languages.

so the median language, meaning whatever language the median pro-
grammer uses, moves as slow as an iceberg. Garbage collection, intro-
duced by Lisp in about 1960, is now widely considered to be a good
thing. Runtime typing, ditto, is growing in popularity. Lexical closures,
introduced by Lisp in the early 1970s, are now, just barely, on the radar
screen. Macros, introduced byLisp in themid 1960s, are still terra incog-
nita.

Obviously, the median language has enormous momentum. I’m not
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proposing that you can fight this powerful force. What I’m proposing
is exactly the opposite: that, like a practitioner of Aikido, you can use it
against your opponents.

If you work for a big company, this may not be easy. You will have
a hard time convincing the pointy-haired boss to let you build things
in Lisp, when he has just read in the paper that some other language
is poised, like Ada was twenty years ago, to take over the world. But if
you work for a startup that doesn’t have pointy-haired bosses yet, you
can, like we did, turn the Blub paradox to your advantage: you can use
technology that your competitors, glued immovably to the median lan-
guage, will never be able to match.

If you ever do find yourself working for a startup, here’s a handy
tip for evaluating competitors. Read their job listings. Everything else
on their site may be stock photos or the prose equivalent, but the job
listings have to be specific aboutwhat theywant, or they’ll get thewrong
candidates.

During the yearsweworked onViaweb I read a lot of job descriptions.
A new competitor seemed to emerge out of the woodwork every month
or so. The first thing I would do, after checking to see if they had a
live online demo, was look at their job listings. After a couple years
of this I could tell which companies to worry about and which not to.
The more of an IT flavor the job descriptions had, the less dangerous
the company was. The safest kind were the ones that wanted Oracle
experience. You never had to worry about those. You were also safe if
they said they wanted C++ or Java developers. If they wanted Perl or
Python programmers, that would be a bit frightening—that’s starting
to sound like a company where the technical side, at least, is run by
real hackers. If I had ever seen a job posting looking for Lisp hackers, I
would have been really worried.





Proof by Reduction

An engineer and a mathematician were hiking when they were suddenly
attacked by a bear. The engineer grabbed a stick and, yelling and stabbing
wildly with the stick, managed to fight off the bear. The next day, the
two went out for another hike, and again, they were attacked by the same
bear. This time, the mathematician, realizing that he was the closest to
a stick, picked it up and handed it to the engineer, thereby reducing the
bear problem to a previously solved problem.

Reduction proofs59 are a little counterintuitive. When we construct 59 Reduction proofs should not be
confused with lambda reductions.
Although they both share the word “re-
duction,” they are completely unrelated
topics.

them for the purposes of computability proofs, we will always have two
facts in mind:

1. We want to disprove a fact about some problem of interest, A (e.g.,
“A is computable.”)

2. We already know a fact something about some other, possibly related
problem, B (e.g., “B is not computable”).

Like all formal tools, reduction proofs are a template (a “form”). The
trick is to recognize when the problem fits the mold. When the tool is
used correctly, out pops the answer.

Here’s the template we’re going to follow. Let P be a logical proposi-
tion (a statement that is either true or false), and letQ be another logical
proposition implied by P . In other words,

P ⇒ Q

For example, P could be the proposition “it is sunny outside.” Q

could be “it is not snowing.” If we think that one implies the other, then
we would read P ⇒ Q as “if it is sunny outside, then it is not snowing.”
This statement is clearly true. P really does implyQ. However, since this
is Williamstown, if you all look outside, it might actually be snowing. If
that’s the case, it cannot be sunny outside.

The above example should suggest to you that oneway youmight try
to disprove a statementP is to show that an implied statementQ is false.
In other words, if we claim P ⇒ Q, and P really impliesQ, and then we
show¬Q, then itmust also be the case that¬P . (If you’re having trouble
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seeing why I am allowed to use this trick, see the derivation from first
principles at the bottom of this section.)

Finding a reduction

Let’s apply this template. What is the problem of interest? Consider
the following question: Is it possible to write a function, halt0? When
given a program p and an input i, halt0 returns true if and only if p(i)
does not halt.

Given about what we know about computability (i.e., that halt is not
computable), we should have a nagging suspicion that halt0 is also not
computable. But can we set up a logical implication of the above form
to prove that halt0 is not computable? Indeed we can. Remember—the
key is to imply something that we know cannot be true.

Let’s start with a fact that we know cannot be true. Q: “halt is com-
putable.”

Now, canwe show thatQ follows logically from the fact that wewant
to disprove? P : “halt0 is computable.”

We’re going to use the same P ⇒ Q logic trick as in our snowing
example above, and show that if P is true, P logically implies Q. This
is where reductions fit in. A reduction is an algorithm that turns one
problem into another problem. Why do we want an algorithm? Well,
last time I checked, if computers did one thing well, it was logic. So if
one can write an algorithm for transforming problems, it’s logical, and
a computer really could do it.

Remember when you learned about proving things usingmathemat-
ical induction? When proving the inductive step, which is an implica-
tion of the form P ⇒ Q, recall that youwere allowed to assume P . Since
we are also attempting to prove an implication, we also get to assume P
is true. Remember that P is “halt0 is computable.”

Here’s an algorithm (in Python) that turns instances of halt into
halt0.

def halt(p,i):
return not halt0(p,i)

If we assume thatP is computable, we really could have a halt0 func-
tion. Some really smart person could have coded it up and stuck it in a
library for us. So the above function, halt, should be possible, right? I
didn’t do anything fancy. I just followed the rules of Python. halt just
calls halt0 and negates the result.

Looking back at our statements,
Q: “halt is computable”
and
P : “halt0 is computable”
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what the reduction just showed is that P ⇒ Q. We can’t avoid P ⇒ Q,
because look, I just madeQ happen using P . Therefore, it is true that P
implies Q.

But we also know, because I showed you in class (or if you’re reading
this early, I will), is that Q cannot be true. halt is not computable. ¬Q.

Therefore halt0 is not computable. ¬P .

Why does ¬Q ⇒ ¬P when P ⇒ Q?

We can derive what happens to the antecedent (P ) of an implication
(P ⇒ Q) when we know that the consequent (Q) is not true. I claim
thatP ⇒ Q is logically equivalent to the statement¬P∨Q. We canprove
this equivalence rigorously by working out a truth table.60 ¬P ∨ Q is 60 When I am confused about what

conditionals do in code, I sometimes
work out truth tables. A fellow student
once mocked me for using this trick.
“Dan has to write out the truth tables
to understand it! Ha ha.” This is a silly
thing to be elitist about. Programming is
hard. I can still solve the problem. More
importantly, I am not confused.

easier to work with, because it gets rid of the pesky implication symbol
(whatever that means).

P Q ¬P ∨Q P ⇒ Q

T T T T
T F F F
F T T T
F F T T

We know that ¬P ∨Q is true, just as we do with our Python program
above. Let’s start our proof with that fact.

¬P ∨Q = true given
¬P∨ false = true because Q is false

¬P = true because “anything” ∨ false is just “anything”
P = false by negation

Therefore, if P ⇒ Q itself is true andQ is false, then P must be false.





How to Fix a Motorcycle

ZEN AND THE ART OF MOTORCYCLE MAINTENANCE, by Robert Pirsig, is an unusual work of fiction inspired by
real life events. The story follows a father and son on a motorcycle trip across the United States. During their travels,
we hear the narrator’s internal dialog as he considers a question of great importance to him: what is quality? Like
Plato’s Dialogues, the following is a work of philosophy, but what I love about it is that the author presents his thesis
in the form of a discourse on motorcycle maintenance.
You are reading this excerpt because it is relevant—and inmy opinion, of primary importance—to the technical work
of programming a computer. Note that I have omitted some passages to make the reading shorter, and because the
author intersperses the text with comments about what he is seeing and doing as he rides his motorcycle.
Note that Pirsig uses the term “Chautauqua” throughout the text. A Chautauqua is a form of storytelling education
that was popular in the early 20th century in the US. You can just mentally substitute the word “dialogue” instead.
[—ed.]

I like the word “gumption” because it’s so homely and so forlorn and so out of style it looks as if it needs a
friend and isn’t likely to reject anyone who comes along. It’s an old Scottish word, once used a lot by pioneers,
but which, like “kin,” seems to have all but dropped out of use. I like it also because it describes exactly what
happens to someone who connects with quality. He gets filled with gumption.

The Greeks called it enthousiasmos, the root of “enthusiasm.” which means literally “filled with theos,” or
God, or quality. See how that fits?

A person filled with gumption doesn’t sit around dissipating and stewing about things. He’s at the front
of the train of his own awareness, watching to see what’s up the track and meeting it when it comes. That’s
gumption.

***

The gumption-filling process occurswhen one is quiet long enough to see andhear and feel the real universe,
not just one’s own stale opinions about it. But it’s nothing exotic. That’s why I like the word.

You see it often in people who return from long, quiet fishing trips. Often they’re a little defensive about
having put so much time to “no account” because there’s no intellectual justification for what they’ve been
doing. But the returned fisherman usually has a peculiar abundance of gumption, usually for the very same
things he was sick to death of a few weeks before. He hasn’t been wasting time. It’s only our limited cultural
viewpoint that makes it seem so.

If you’re going to repair a motorcycle, an adequate supply of gumption is the first and most important tool.
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If you haven’t got that you might as well gather up all the other tools and put them away, because they won’t
do you any good.

Gumption is the psychic gasoline that keeps the whole thing going. If you haven’t got it there’s no way the
motorcycle can possibly be fixed. But if you have got it and know how to keep it there’s absolutely no way in
this whole world that motorcycle can keep from getting fixed. It’s bound to happen. Therefore the thing that
must be monitored at all times and preserved before anything else is the gumption.

This paramount importance of gumption solves a problem of format of this Chautauqua. The problem has
been how to get off the generalities. If the Chautauqua gets into the actual details of fixing one individual
machine the chances are overwhelming that it won’t be your make and model and the information will be not
only useless but dangerous, since information that fixes onemodel can sometimes wreck another. For detailed
information of an objective sort, a separate shop manual for the specific make and model of machine must be
used. In addition, a general shop manual such as Audel’s Automotive Guide fills in the gaps.

But there’s another kind of detail that no shopmanual goes into but that is common to all machines and can
be given here. This is the detail of the quality relationship, the gumption relationship, between the machine
and themechanic, which is just as intricate as themachine itself. Throughout the process of fixing themachine
things always come up, low-quality things, from a dusted knuckle to an accidentally ruined “irreplaceable”
assembly. These drain off gumption, destroy enthusiasm and leave you so discouraged you want to forget the
whole business. I call these things “gumption traps.”

There are hundreds of different kinds of gumption traps, maybe thousands, maybe millions. I have no way
of knowing howmany I don’t know. I know it seems as though I’ve stumbled into every kind of gumption trap
imaginable. What keeps me from thinking I’ve hit them all is that with every job I discover more. Motorcycle
maintenance gets frustrating. Angering. Infuriating. That’s what makes it interesting.

***

What I have in mind now is a catalog of “Gumption Traps I Have Known.” I want to start a whole new
academic field, gumptionology, in which these traps are sorted, classified, structured into hierarchies and
interrelated for the edification of future generations and the benefit of all mankind.

Gumptionology 101 ... An examination of affective, cognitive and psychomotor blocks in the
perception of quality relationships ... 3 cr, VII, MWF. I’d like to see that in a college catalog some-
where.

In traditional maintenance gumption is considered something you’re born with or have acquired as a re-
sult of good upbringing. It’s a fixed commodity. From the lack of information about how one acquires this
gumption one might assume that a person without any gumption is a hopeless case.

In nondualistic maintenance gumption isn’t a fixed commodity. It’s variable, a reservoir of good spirits
that can be added to or subtracted from. Since it’s a result of the perception of quality, a gumption trap,
consequently, can be defined as anything that causes one to lose sight of quality, and thus lose one’s enthusiasm
for what one is doing. As one might guess from a definition as broad as this, the field is enormous and only a
beginning sketch can be attempted here.

As far as I can see there are two main types of gumption traps. The first type is those in which you’re
thrown off the quality track by conditions that arise from external circumstances, and I call these “setbacks.”
The second type is traps in which you’re thrown off the quality track by conditions that are primarily within
yourself. These I don’t have any generic name for . . . “hang-ups” I suppose. I’ll take up the externally caused
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setbacks first.
The first time you do any major job it seems as though the out-of-sequence-reassembly setback is your

biggest worry. This occurs usually at a time when you think you’re almost done. After days of work you
finally have it all together except for: What’s this? A connecting-rod bearing liner?! How could you have
left that out? Oh Jesus, everything’s got to come apart again! You can almost hear the gumption escaping.
Pssssssssssssss.

There’s nothing you can do but go back and take it all apart again—after a rest period of up to a month that
allows you to get used to the idea.

There are two techniques I use to prevent the out-of-sequence-reassembly setback. I use themmainly when
I’m getting into a complex assembly I don’t know anything about.

It should be inserted here parenthetically that there’s a school of mechanical thought which says I shouldn’t
be getting into a complex assembly I don’t know anything about. I should have training or leave the job to a
specialist. That’s a self-serving school of mechanical eliteness I’d like to see wiped out. That was a “specialist”
who broke [. . .] this machine. I’ve edited manuals written to train specialists for IBM, and what they know
when they’re done isn’t that great. You’re at a disadvantage the first time around and it may cost you a little
more because of parts you accidentally damage, and it will almost undoubtedly take a lot more time, but the
next time around you’re way ahead of the specialist. You, with gumption, have learned the assembly the hard
way and you’ve a whole set of good feelings about it that he’s unlikely to have.

Anyway, the first technique for preventing the out-of-sequence-reassembly gumption trap is a notebook in
which I write down the order of disassembly and note anything unusual that might give trouble in reassembly
later on. This notebook gets plenty grease-smeared and ugly. But a number of times one or two words in it
that didn’t seem important when written down have prevented damage and saved hours of work. The notes
should pay special attention to left-hand and right-hand and up-and-down orientations of parts, and color
coding and positions of wires. If incidental parts look worn or damaged or loose this is the time to note it so
that you can make all your parts purchases at the same time.

The second technique for preventing the out-of-sequence-reassembly gumption trap is newspapers opened
out on the floor of the garage on which all the parts are laid left-to-right and top-to-bottom in the order in
which you read a page. That way when you put it back together in reverse order the little screws and washers
and pins that can be easily overlooked are brought to your attention as you need them.

Even with all these precautions, however, out-of-sequence-reassemblies sometimes occur and when they
do you’ve got to watch the gumption. Watch out for gumption desperation, in which you hurry up wildly in
an effort to restore gumption by making up for lost time. That just creates more mistakes. When you first see
that you have to go back and take it apart all over again it’s definitely time for that long break.

It’s important to distinguish from these the reassemblies that were out of sequence because you lacked
certain information. Frequently the whole reassembly process becomes a cut-and-try technique in which you
have to take it apart to make a change and then put it together again to see if the change works. If it doesn’t
work, that isn’t a setback because the information gained is a real progress.

But if you’ve made just a plain old dumb mistake in reassembly, some gumption can still be salvaged by the
knowledge that the second disassembly and reassembly is likely to go much faster than the first one. You’ve
unconsciously memorized all sorts of things you won’t have to relearn.

***
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The intermittent failure setback is next. In this the thing that is wrong becomes right all of a sudden just
as you start to fix it. Electrical short circuits are often in this class. The short occurs only when the machine’s
bouncing around. As soon as you stop everything’s okay. It’s almost impossible to fix it then. All you can
do is try to get it to go wrong again and if it won’t, forget it. Intermittents become gumption traps when they
fool you into thinking you’ve really got the machine fixed. It’s always a good idea on any job to wait a few
hundred miles before coming to that conclusion. They’re discouraging when they crop up again and again,
but when they do you’re no worse off than someone who goes to a commercial mechanic. In fact you’re better
off. They’re much more of a gumption trap for the owner who has to drive his machine to the shop again
and again and never get satisfaction. On your own machine you can study them over a long period of time,
something a commercial mechanic can’t do, and you can just carry around the tools you think you’ll need until
the intermittent happens again, and then, when it happens, stop and work on it.

When intermittents recur, try to correlate them with other things the cycle is doing. Do the misfires, for
example, occur only on bumps, only on turns, only on acceleration? Only on hot days? These correlations
are clues for cause-and-effect hypotheses. In some intermittents you have to resign yourself to a long fishing
expedition, but no matter how tedious that gets it’s never as tedious as taking the machine to a commercial
mechanic five times. I’m tempted to go into long detail about “Intermittents I Have Known” with a blow-by-
blow description of how these were solved. But this gets like those fishing stories, of interest mainly to the
fisherman, who doesn’t quite catch on to why everybody yawns. He enjoyed it.

Next to misassemblies and intermittents I think the most common external gumption trap is the parts set-
back. Here a person who does his own work can get depressed in a number of ways. Parts are something
you never plan on buying when you originally get the machine. Dealers like to keep their inventories small.
Wholesalers are slow and always understaffed in the spring when everybody buys motorcycle parts.

The pricing on parts is the second part of this gumption trap. It’s a well-known industrial policy to price the
original equipment competitively, because the customer can always go somewhere else, but on parts to over-
price and clean up. The price of the part is not only jacked upway beyond its new price; you get a special price
because you’re not a commercial mechanic. This is a sly arrangement that allows the commercial mechanic to
get rich by putting in parts that aren’t needed.

One more hurdle yet. The part may not fit. Parts lists always contain mistakes. Make and model changes
are confusing. Out-of-tolerance parts runs sometimes get through quality control because there’s no operating
checkout at the factory. Some of the parts you buy are made by specialty houses who don’t have access to the
engineering data needed to make them right. Sometimes they get confused about make and model changes.
Sometimes the parts man you’re dealing with jots down the wrong number. Sometimes you don’t give him
the right identification. But it’s always a major gumption trap to get all the way home and discover that a new
part won’t work.

The parts traps may be overcome by a combination of a number of techniques. First, if there’s more than
one supplier in town by all means choose the one with the most cooperative parts man. Get to know him on
a first-name basis. Often he will have been a mechanic once himself and can provide a lot of information you
need.

Keep an eye out for price cutters and give them a try. Some of them have good deals. Auto stores and
mail-order houses frequently stock the commoner cycle parts at prices way below those of the cycle dealers.
You can buy roller chain from chain manufacturers, for example, at way below the inflated cycle-shop prices.

Always take the old part with you to prevent getting a wrong part. Take along some machinist’s calipers
for comparing dimensions.

Finally, if you’re as exasperated as I am by the parts problem and have some money to invest, you can
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take up the really fascinating hobby of machining your own parts. I have a little 6-by-18-inch lathe with a
milling attachment and a full complement of welding equipment: arc, heli-arc, gas and mini-gas for this kind
of work. With the welding equipment you can build up worn surfaces with better than original metal and
then machine it back to tolerance with carbide tools. You can’t really believe how versatile that lathe-plus-
milling-plus-welding arrangement is until you’ve used it. If you can’t do the job directly you can always make
something that will do it. The work of machining a part is very slow, and some parts, such as ball bearings,
you’re never going to machine, but you’d be amazed at how you can modify parts designs so that you can
make them with your equipment, and the work isn’t nearly as slow or frustrating as a wait for some smirking
parts man to send away to the factory. And the work is gumption building, not gumption destroying. To run
a cycle with parts in it you’ve made yourself gives you a special feeling you can’t possibly get from strictly
store-bought parts.

***

Well, those were the commonest setbacks I can think of: out-of-sequence reassembly, intermittent failure
and parts problems. But although setbacks are the commonest gumption traps they’re only the external cause
of gumption loss. Time now to consider some of the internal gumption traps that operate at the same time.

As the course description of gumptionology indicated, this internal part of the field can be broken down into
three main types of internal gumption traps: those that block affective understanding, called “value traps”;
those that block cognitive understanding, called “truth traps”; and those that block psychomotor behavior,
called “muscle traps.” The value traps are by far the largest and the most dangerous group.

Of the value traps, the most widespread and pernicious is value rigidity. This is an inability to revalue what
one sees because of commitment to previous values. In motorcycle maintenance, you must rediscover what
you do as you go. Rigid values make this impossible.

The typical situation is that the motorcycle doesn’t work. The facts are there but you don’t see them. You’re
looking right at them, but they don’t yet have enough value. [. . .] Quality, value, creates the subjects and
objects of the world. The facts do not exist until value has created them. If your values are rigid you can’t
really learn new facts.

This often shows up in premature diagnosis, when you’re sure you know what the trouble is, and then
when it isn’t, you’re stuck. Then you’ve got to find some new clues, but before you can find them you’ve got to
clear your head of old opinions. If you’re plagued with value rigidity you can fail to see the real answer even
when it’s staring you right in the face because you can’t see the new answer’s importance.

The birth of a new fact is always a wonderful thing to experience. It’s dualistically called a “discovery”
because of the presumption that it has an existence independent of anyone’s awareness of it. When it comes
along, it always has, at first, a low value. Then, depending on the value-looseness of the observer and the
potential quality of the fact, its value increases, either slowly or rapidly, or the value wanes and the fact disap-
pears.

The overwhelming majority of facts, the sights and sounds that are around us every second and the rela-
tionships among them and everything in our memory. . . these have no quality, in fact have a negative quality.
If they were all present at once our consciousness would be so jammed with meaningless data we couldn’t
think or act. So we preselect on the basis of quality [. . .].

What you have to do, if you get caught in this gumption trap of value rigidity, is slow down. . . you’re going
to have to slow down anyway whether you want to or not. . . but slow down deliberately and go over ground
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that you’ve been over before to see if the things you thought were important were really important and to—
well—just stare at the machine. There’s nothing wrong with that. Just live with it for a while. Watch it the way
you watch a line when fishing and before long, as sure as you live, you’ll get a little nibble, a little fact asking
in a timid, humble way if you’re interested in it. That’s the way the world keeps on happening. Be interested
in it.

At first try to understand this new fact not so much in terms of your big problem as for its own sake. That
problem may not be as big as you think it is. And that fact may not be as small as you think it is. It may not
be the fact you want but at least you should be very sure of that before you send the fact away. Often before
you send it away you will discover it has friends who are right next to it and are watching to see what your
response is. Among the friends may be the exact fact you are looking for.

After a while youmay find that the nibbles you get are more interesting than your original purpose of fixing
the machine. When that happens you’ve reached a kind of point of arrival. Then you’re no longer strictly a
motorcycle mechanic, you’re also a motorcycle scientist, and you’ve completely conquered the gumption trap
of value rigidity.

***

I keep wanting to go back to that analogy of fishing for facts. I can just see somebody asking with great
frustration, “Yes, but which facts do you fish for? There’s got to be more to it than that.”

But the answer is that if you know which facts you’re fishing for you’re no longer fishing. You’ve caught
them. I’m trying to think of a specific example.

All kinds of examples from cyclemaintenance could be given, but themost striking example of value rigidity
I can think of is the old South Indian Monkey Trap, which depends on value rigidity for its effectiveness. The
trap consists of a hollowed-out coconut chained to a stake. The coconut has some rice inside which can be
grabbed through a small hole. The hole is big enough so that the monkey’s hand can go in, but too small for
his fist with rice in it to come out. The monkey reaches in and is suddenly trapped. . . by nothing more than his
own value rigidity. He can’t revalue the rice. He cannot see that freedom without rice is more valuable than
capture with it. The villagers are coming to get him and take him away. They’re coming closer—closer!—now!
What general advice. . . not specific advice. . . but what general advice would you give the poor monkey in
circumstances like this?

Well, I think you might say exactly what I’ve been saying about value rigidity, with perhaps a little extra
urgency. There is a fact this monkey should know: if he opens his hand he’s free. But how is he going to
discover this fact? By removing the value rigidity that rates rice above freedom. How is he going to do that?
Well, he should somehow try to slow down deliberately and go over ground that he has been over before and
see if things he thought were important really were important and, well, stop yanking and just stare at the
coconut for a while. Before long he should get a nibble from a little fact wondering if he is interested in it. He
should try to understand this fact not so much in terms of his big problem as for its own sake. That problem
may not be as big as he thinks it is. That fact may not be as small as he thinks it is either. That’s about all the
general information you can give him.

***
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The next one is important. It’s the internal gumption trap of ego. Ego isn’t entirely separate from value
rigidity but one of the many causes of it.

If you have a high evaluation of yourself then your ability to recognize new facts is weakened. Your ego
isolates you from the quality reality. When the facts show that you’ve just goofed, you’re not as likely to admit
it. When false information makes you look good, you’re likely to believe it. On any mechanical repair job ego
comes in for rough treatment. You’re always being fooled, you’re always making mistakes, and a mechanic
who has a big ego to defend is at a terrific disadvantage. If you know enough mechanics to think of them as a
group, and your observations coincide with mine, I think you’ll agree that mechanics tend to be rather modest
and quiet. There are exceptions, but generally if they’re not quiet and modest at first, the work seems to make
them that way. And skeptical. Attentive, but skeptical, But not egoistic. There’s no way to bullshit your way
into looking good on a mechanical repair job, except with someone who doesn’t know what you’re doing.

I was going to say that the machine doesn’t respond to your personality, but it does respond to your per-
sonality. It’s just that the personality that it responds to is your real personality, the one that genuinely feels
and reasons and acts, rather than any false, blown-up personality images your ego may conjure up. These
false images are deflated so rapidly and completely you’re bound to be very discouraged very soon if you’ve
derived your gumption from ego rather than quality.

If modesty doesn’t come easily or naturally to you, one way out of this trap is to fake the attitude of modesty
anyway. If you just deliberately assume you’re not much good, then your gumption gets a boost when the facts
prove this assumption is correct. This way you can keep going until the time comes when the facts prove this
assumption is incorrect.

Anxiety, the next gumption trap, is sort of the opposite of ego. You’re so sure you’ll do everything wrong
you’re afraid to do anything at all. Often this, rather than “laziness,” is the real reason you find it hard to
get started. This gumption trap of anxiety, which results from overmotivation, can lead to all kinds of errors
of excessive fussiness. You fix things that don’t need fixing, and chase after imaginary ailments. You jump to
wild conclusions and build all kinds of errors into themachine because of your own nervousness. These errors,
when made, tend to confirm your original underestimation of yourself. This leads to more errors, which lead
to more underestimation, in a self-stoking cycle.

The best way to break this cycle, I think, is to work out your anxieties on paper. Read every book and
magazine you can on the subject. Your anxiety makes this easy and the more you read the more you calm
down. You should remember that it’s peace of mind you’re after and not just a fixed machine.

When beginning a repair job you can list everything you’re going to do on little slips of paper which you
then organize into proper sequence. You discover that you organize and then reorganize the sequence again
and again as more and more ideas come to you. The time spent this way usually more than pays for itself in
time saved on the machine and prevents you from doing fidgety things that create problems later on.

You can reduce your anxiety somewhat by facing the fact that there isn’t a mechanic alive who doesn’t louse
up a job once in a while. The main difference between you and the commercial mechanics is that when they
do it you don’t hear about it. . . just pay for it, in additional costs prorated through all your bills. When you
make the mistakes yourself, you at ]east get the benefit of some education.

Boredom is the next gumption trap that comes to mind. This is the opposite of anxiety and commonly goes
with ego problems. Boredom means you’re off the quality track, you’re not seeing things freshly, you’ve lost
your “beginner’s mind” and your motorcycle is in great danger. Boredommeans your gumption supply is low
and must be replenished before anything else is done.

When you’re bored, stop! Go to a show. Turn on the TV. Call it a day. Do anything butwork on thatmachine.
If you don’t stop, the next thing that happens is the BigMistake, and then all the boredom plus the BigMistake
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combine together in one Sunday punch to knock all the gumption out of you and you are really stopped.
My favorite cure for boredom is sleep. It’s very easy to get to sleep when bored and very hard to get bored

after a long rest. My next favorite is coffee. I usually keep a pot plugged in while working on the machine.
If these don’t work it may mean deeper quality problems are bothering you and distracting you from what’s
before you. The boredom is a signal that you should turn your attention to these problems. . . that’s what
you’re doing anyway. . . and control them before continuing on the motorcycle.

For me the most boring task is cleaning the machine. It seems like such a waste of time. It just gets dirty
again the first time you ride it. [My friend] John always kept his BMW spic and span. It really did look nice,
while mine’s always a little ratty, it seems.

***

One solution to boredom on certain kinds of jobs such as greasing and oil changing and tuning is to turn
them into a kind of ritual. There’s an esthetic to doing things that are unfamiliar and another esthetic to doing
things that are familiar. I have heard that there are two kinds of welders: production welders, who don’t
like tricky setups and enjoy doing the same thing over and over again; and maintenance welders, who hate it
when they have to do the same job twice. The advice was that if you hire a welder make sure which kind he is,
because they’re not interchangeable. I’m in that latter class, and that’s probably why I enjoy troubleshooting
more than most and dislike cleaning more than most. But I can do both when I have to and so can anyone else.
When cleaning I do it the way people go to church. . . not so much to discover anything new, although I’m alert
for new things, but mainly to reacquaint myself with the familiar. It’s nice sometimes to go over familiar paths.

Zen has something to say about boredom. Its main practice of “just sitting” has got to be the world’s most
boring activity [. . .]. You don’t do anything much; not move, not think, not care. What could be more boring?
Yet in the center of all this boredom is the very thing Zen Buddhism seeks to teach. What is it? What is it at
the very center of boredom that you’re not seeing?

Impatience is close to boredom but always results from one cause: an underestimation of the amount of
time the job will take. You never really know what will come up and very few jobs get done as quickly as
planned. Impatience is the first reaction against a setback and can soon turn to anger if you’re not careful.

Impatience is best handled by allowing an indefinite time for the job, particularly new jobs that require
unfamiliar techniques; by doubling the allotted time when circumstances force time planning; and by scaling
down the scope of what you want to do. Overall goals must be scaled down in importance and immediate
goals must be scaled up. This requires value flexibility, and the value shift is usually accompanied by some
loss of gumption, but it’s a sacrifice that must be made. It’s nothing like the loss of gumption that will occur if
a Big Mistake caused by impatience occurs.

My favorite scaling-down exercise is cleaning up nuts and bolts and studs and tapped holes. I’ve got a
phobia about crossed or jimmied or rust-jammed or dirt-jammed threads that cause nuts to turn slow or hard;
and when I find one, I take its dimensions with a thread gauge and calipers, get out the taps and dies, recut
the threads on it, then examine it and oil it and I have a whole new perspective on patience. Another one is
cleaning up tools that have been used and not put away and are cluttering up the place. This is a good one
because one of the first warning signs of impatience is frustration at not being able to lay your hand on the tool
you need right away. If you just stop and put tools away neatly you will both find the tool and also scale down
your impatience without wasting time or endangering the work.
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***

Well, that about does it for value traps. There’s a whole lot more of them, of course. I’ve really only just
touched on the subject to show what’s there. Almost any mechanic could fill you in for hours on value traps
he’s discovered that I don’t know anything about. You’re bound to discover plenty of them for yourself on
almost every job. Perhaps the best single thing to learn is to recognize a value trap when you’re in it and work
on that before you continue on the machine.

***

I want to talk now about truth traps and muscle traps and then stop this Chautauqua for today.
Truth traps are concerned with data that are apprehended and are within [your mind]. For the most part

these data are properly handled by conventional dualistic logic and the scientific method [. . .]. But there’s one
trap that isn’t. . . the truth trap of yes-no logic.

Yes and no—this or that—one or zero. On the basis of this elementary two-term discrimination, all human
knowledge is built up. The demonstration of this is the computer memory which stores all its knowledge in
the form of binary information. It contains ones and zeros, that’s all.

Because we’re unaccustomed to it, we don’t usually see that there’s a third possible logical term equal to yes
and no which is capable of expanding our understanding in an unrecognized direction. We don’t even have a
term for it, so I’ll have to use the Japanese mu [�].

Mu means “no thing.” [. . .] Mu simply says, “No class; not one, not zero, not yes, not no.” It states that
the context of the question is such that a yes or no answer is in error and should not be given. “Unask the
question” is what it says.

Mu becomes appropriate when the context of the question becomes too small for the truth of the answer.
When the Zen monk Joshu was asked whether a dog had a Buddha nature he said “Mu,” meaning that if
he answered either way he was answering incorrectly. The Buddha nature cannot be captured by yes or no
questions.

That mu exists in the natural world investigated by science is evident. It’s just that, as usual, we’re trained
not to see it by our heritage. For example, it’s stated over and over again that computer circuits exhibit only
two states, a voltage for “one” and a voltage for “zero.” That’s silly!

Any computer-electronics technician knows otherwise. Try to find a voltage representing one or zero when
the power is off! The circuits are in amu state. They aren’t at one, they aren’t at zero, they’re in an indeterminate
state that has no meaning in terms of ones or zeros. Readings of the voltmeter will show, in many cases,
“floating ground” characteristics, in which the technician isn’t reading characteristics of the computer circuits
at all but characteristics of the voltmeter itself. What’s happened is that the power-off condition is part of a
context larger than the context in which the one zero states are considered universal. The question of one or
zero has been “unasked.” And there are plenty of other computer conditions besides a power-off condition in
which mu answers are found because of larger contexts than the one-zero universality.

The dualistic mind tends to think of mu occurrences in nature as a kind of contextual cheating, or irrele-
vance, but mu is found throughout all scientific investigation, and nature doesn’t cheat, and nature’s answers
are never irrelevant. It’s a great mistake, a kind of dishonesty, to sweep nature’s mu answers under the car-
pet. Recognition and valuation of these answers would do a lot to bring logical theory closer to experimental
practice. Every laboratory scientist knows that very often his experimental results provide mu answers to the
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yes-no questions the experiments were designed for. In these cases he considers the experiment poorly de-
signed, chides himself for stupidity and at best considers the “wasted” experiment which has provided the
mu answer to be a kind of wheel-spinning which might help prevent mistakes in the design of future yes-no
experiments.

This low evaluation of the experiment which provided the mu answer isn’t justified. The mu answer is an
important one. It’s told the scientist that the context of his question is too small for nature’s answer and that
he must enlarge the context of the question. That is a very important answer! His understanding of nature is
tremendously improved by it, which was the purpose of the experiment in the first place. A very strong case
can be made for the statement that science grows by its mu answers more than by its yes or no answer. Yes or
no confirms or denies a hypothesis. Mu says the answer is beyond the hypothesis. Mu is the “phenomenon”
that inspires scientific enquiry in the first place! There’s nothing mysterious or esoteric about it. It’s just that
our culture has warped us to make a low value judgment of it.

In motorcycle maintenance the mu answer given by the machine to many of the diagnostic questions put
to it is a major cause of gumption loss. It shouldn’t be! When your answer to a test is indeterminate it means
one of two things: that your test procedures aren’t doing what you think they are or that your understanding
of the context of the question needs to be enlarged. Check your tests and restudy the question. Don’t throw
away those mu answers! They’re every bit as vital as the yes or no answers. They’re more vital. They’re the
ones you grow on!

***

The mu expansion is the only thing I want to say about truth traps at this time. Time to switch to the
psychomotor traps. This is the domain of understanding which is most directly related to what happens to the
machine.

Here by far the most frustrating gumption trap is inadequate tools. Nothing’s quite so demoralizing as a
tool hang-up. Buy good tools as you can afford them and you’ll never regret it. If you want to save money
don’t overlook the newspaper want ads. Good tools, as a rule, don’t wear out, and good secondhand tools are
much better than inferior new ones. Study the tool catalogs. You can learn a lot from them.

Apart from bad tools, bad surroundings are a major gumption trap. Pay attention to adequate lighting. It’s
amazing the number of mistakes a little light can prevent.

Some physical discomfort is unpreventable, but a lot of it, such as that which occurs in surroundings that
are too hot or too cold, can throw your evaluations way off if you aren’t careful. If you’re too cold, for example,
you’ll hurry and probably make mistakes. If you’re too hot your anger threshold gets much lower. Avoid out-
of-position work when possible. A small stool on either side of the cycle will increase your patience greatly
and you’ll be much less likely to damage the assemblies you’re working on.

There’s one psychomotor gumption trap, muscular insensitivity, which accounts for some real damage. It
results in part from lack of kinesthesia, a failure to realize that although the externals of a cycle are rugged,
inside the engine are delicate precision parts which can be easily damaged by muscular insensitivity. There’s
what’s called “mechanic’s feel,” which is very obvious to those who know what it is, but hard to describe to
those who don’t; and when you see someone working on a machine who doesn’t have it, you tend to suffer
with the machine.

The mechanic’s feel comes from a deep inner kinesthetic feeling for the elasticity of materials. Some mate-
rials, like ceramics, have very little, so that when you thread a porcelain fitting you’re very careful not to apply
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great pressures. Other materials, like steel, have tremendous elasticity, more than rubber, but in a range in
which, unless you’re working with large mechanical forces, the elasticity isn’t apparent.

With nuts and bolts you’re in the range of large mechanical forces and you should understand that within
these ranges metals are elastic. When you take up a nut there’s a point called “finger-tight” where there’s
contact but no takeup of elasticity. Then there’s “snug,” in which the easy surface elasticity is taken up. Then
there’s a range called “tight,” in which all the elasticity is taken up. The force required to reach these three
points is different for each size of nut and bolt, and different for lubricated bolts and for locknuts. The forces
are different for steel and cast iron and brass and aluminum and plastics and ceramics. But a person with
mechanic’s feel knows when something’s tight and stops. A person without it goes right on past and strips
the threads or breaks the assembly.

A “mechanic’s feel” implies not only an understanding for the elasticity of metal but for its softness. The
insides of a motorcycle contain surfaces that are precise in some cases to as little as one ten-thousandth of
an inch. If you drop them or get dirt on them or scratch them or bang them with a hammer they’ll lose
that precision. It’s important to understand that the metal behind the surfaces can normally take great shock
and stress but that the surfaces themselves cannot. When handling precision parts that are stuck or difficult
to manipulate, a person with mechanic’s feel will avoid damaging the surfaces and work with his tools on
the nonprecision surfaces of the same part whenever possible. If he must work on the surfaces themselves,
he’ll always use softer surfaces to work them with. Brass hammers, plastic hammers, wood hammers, rubber
hammers and lead hammers are all available for this work. Use them. Vise jaws can be fitted with plastic
and copper and lead faces. Use these too. Handle precision parts gently. You’ll never be sorry. If you have a
tendency to bang things around, takemore time and try to develop a littlemore respect for the accomplishment
that a precision part represents.

***

Maybe it’s just the usual late afternoon letdown, but after all I’ve said about all these things today I just have
a feeling that I’ve somehow talked around the point. Some could ask, “Well, if I get around all those gumption
traps, then will I have the thing licked?”

The answer, of course, is no, you still haven’t got anything licked. You’ve got to live right too. It’s the way
you live that predisposes you to avoid the traps and see the right facts. You want to know how to paint a
perfect painting? It’s easy. Make yourself perfect and then just paint naturally. That’s the way all the experts
do it. The making of a painting or the fixing of a motorcycle isn’t separate from the rest of your existence. If
you’re a sloppy thinker the six days of the week you aren’t working on your machine, what trap avoidances,
what gimmicks, can make you all of a sudden sharp on the seventh? It all goes together.

But if you’re a sloppy thinker six days a week and you really try to be sharp on the seventh, then maybe the
next six days aren’t going to be quite as sloppy as the preceding six. What I’m trying to come up with on these
gumption traps I guess, is shortcuts to living right.

The real cycle you’re working on is a cycle called yourself. The machine that appears to be “out there” and
the person that appears to be “in here” are not two separate things. They grow toward quality or fall away
from quality together.





Parsing

We’ve discussed parsing lightly until this point. We will now dig down
into the algorithmic details of parsing.

Before we start, you should know that there is a wealth of literature
on parsing. For practical reasons, it was one of the earliest problems at-
tacked by computer scientists. As a result, exploring this topic on your
own can be a little daunting, as a typical description of parsing goes
deep into the weeds about grammar classes, computational complex-
ity, and so on. Compounding this, many computer scientists like to say
offhandedly that parsing “is a solved problem,” which is only true in
the shallowest sense. Even with nice formal models from theoretical
computer science, building a real-world parser remains something of
an art.

Instead, we will look at parsing from a functional standpoint. A
parser is a program that reads in a string as input and, if the input is a
valid sentence in a grammar, (1) it emits a result, otherwise it (2) fails.
This very simple definition allows us to construct a parser in a simple,
recursive manner, using little building blocks. We call these building
blocks parser combinators.

Why do we need parsers?

If you’ve never built a parser before, its rolemay not be obvious, so I will
state it here clearly. In computer science, we use parsers to transform
serial data (e.g., a string) into structured data (e.g., a tree). When build-
ing a programming language, the first thing we need to do is to convert
a string (a program) into our preferred representation of a computer
program, which is a kind of tree. We call that tree an abstract syntax tree,
or AST.

An AST is a tree where the interior nodes are operations and the leaf
nodes store data. Why do we want this representation? Because, in this
form, evaluating a program boils down to a traversal of the tree. For ex-
ample, in the formof programevaluationwe call interpretation, we deter-
mine the “output” of a program by essentially performing a depth-first,
post-order traversal of the tree, combining data from the leaves with op-
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erations in the nodes. The output is the final value computed when we
are done traversing the root node. In the form of program evaluation
we call compilation, we also traverse the AST, but instead, we emit ma-
chine instructions as we go, converting each step of the interpreter into
a sequence of instructions for a machine.

Parsers are used in many more places, from data storage to network
protocols. You will probably encounter a few in your professional life.
It suffices to say that we need them in the design of programming lan-
guages because they form the basis for building user interfaces for hu-
mans.

Parser Combinators

Beforewe dig into the technical details of howparser combinatorswork,
let me try to develop an intuition as to what they do. There are two
essential ideas.

The first essential idea regarding parser combinators is to build “big”
parsing functions out of “little” parsing functions. Andwhen I say func-
tion, I mean the simplest kind of function you can have: a combinator. A
combinator is a function of only bound variables. In other words, this is a
combinator:

let add a b = a + b

but this is not a combinator:

let add a = a + b

because b is a free variable. Where does b come from? It comes from
the environment somewhere, and its precise meaning depends on the
scope rules for your language. Therefore, a combinator is a function that
can be understood without needing any context. It’s a simple function
without any tricks up its sleeve. A parser combintor is therefore a simple
function that does parsing.

But howdowemake “big” parsers out of “little” parsers? The second
essential idea is that some parser combinators function as “glue.” We
call such “glue” functions combining forms.

Armed with “little” parsers and “glue,” we can make “big” parsers
of great sophistication that don’t seem complex. Parser combinators
are exactly the kind of big, ugly problem that becomes easy (or at least
manageable) when you employ a functional programming approach.
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Metaphor

When I work with parser combinators, I like to keep a simple metaphor
in my head: plumbing. The function of a pipe is to carry liquid from
one point to another. As you’re installing the plumbing in your house,
you’re only tangentially thinking aboutwater (or sewage); you’re think-
ing about how the shapes of the pipes fit together. Sometimes you join
multiple pipes. Sometimes you split them. When you put the right stuff
in the pipes, they do their jobs, moving liquid from one place to another.
When you put stuff in pipes that you shouldn’t, they get clogged and
back up (Figure 16).

Figure 16: As a toddler, I once flushed a
Kewpie doll down the toilet. When my
father asked me where my doll was, I
pointed at the toilet and said “In there.”
I have no memory of this incident.
My father, who had to disassemble
the house’s plumbing to find the doll,
remembers it well and loves to remind
me of the fact.

A combinator is like a pipe. It takes an input string, the string
we are parsing. Depending on what the pipe does, it usually outputs a
string of some form; that string represents the remainder of the input.
But combinators may also connect to other combinators; the output of
one combinator is fed into the input of the other.

When all goes well, and you flush the appropriate stuff down your
parser pipes, you are able to parse input successfully. The parser shown
here is designed to parse "dan", and when given the input "dan", it
works just fine.

But when you flush the wrong stuff down the parser pipes, it backs
up, and you get a failure.

Formal Definitions

Let’s get a little more formal in our definition of parser combinators.
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I said that “a parser is a program that reads in a string as input and, if
the input is a valid sentence in a grammar, (1) it emits a result, otherwise
it (2) fails.” Let’s start with the easy part, shall we? What is “input”?

Input

Here’s a simple working definition.

type Input = string

We will revisit this definition later, but it’s something to build on.

Success and Failure

What does it mean for a parser to “succeed” or “fail”?
You might be tempted to say that this means that a parser simply re-

turns a bool, and if you were a theoretician studying grammars, that
might be sufficient. As a practical matter, we usually expect parsers
to return structured data, so we need something a little more nuanced.
How about the following ML data structure?

type Outcome<'a> =
| Success of result: 'a
| Failure

We use 'a because we might want to return any kind of data.
That’s pretty close to what we want, but it’s not perfect. The rea-

son is that we want to be able to combine little parsers into big parsers.
So one way to attack the problem of parsing is to think up a small set
of primitive parsers that we can glue together that make more compli-
cated parsers. Each parser then, takes a little nibble at the input and
hands the rest of the input, the remainder, off to the next parser. So let’s
expand our definition:

type Outcome<'a> =
| Success of result: 'a * remainder: Input
| Failure

As a practical matter, we also add a small amount of extra debugging
information to Failure: the position in the string that the failure oc-
curred, and which parser failed.

type Outcome<'a> =
| Success of result: 'a * remainder: Input
| Failure of fail_pos: int * rule: string
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That’s good enough for now.

Parser

Now we can construct an elegant definition of a parser.

type Parser<'a> = Input -> Outcome<'a>

This definition says is that a parser is a function from input to an
outcome, either success or failure. On success, we communicate back a
result and the remaining portion of the input.

Primitive parsers

You may be surprised to hear that this is enough to start building prim-
itive parsers. The two most primitive are parsers that either succeed no
matter what or fail no matter what. We call them presult and pzero,
respectively.

let presult(a: 'a)(i: Input) : Outcome<'a> = Success(a,i)

let pzero(i: Input) : Outcome<'a> = Failure(0, "pzero")

presult takes a return value ('a) and an input and returns success.
pzero just returns failure.

Now, because both of these functions are written using curried argu-
ments, they have an interesting and very useful property. If you call
them without their last argument, the input, they return a Parser<'a>.
I clearly remember the first time I learned this fact because I was very
confused, and yet, the person teaching me was very excited about this
idea. Maybe you’re smarter than I am and you’re already excited.

In case you’re not excited, here’s the reason this is a useful property.
It’s useful because this property enables us to glue parsers together. As
long as we supply all required arguments to a parser constructor func-
tion, except the last argument, it will construct a parser function. When
we give that constructed parser object the last argument, some Input, it
will parse the input. We need to separate these two tasks because first
we want to build a big parser function, and then later, we want to call it.

Let’s pop these definitions in dotnet fsi and play with them a bit
just to be sure that we’re on the same page.

> let presult(a: 'a)(i: Input) : Outcome<'a> = Success(a,i);;
val presult : a:'a -> i:Input -> Outcome<'a>
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> let pzero(i: Input) : Outcome<'a> = Failure(0, "pzero");;
val pzero : i:Input -> Outcome<'a>

> presult;;
val it : ('a -> Input -> Outcome<'a>)

> presult "hi";;
val it : (Input -> Outcome<string>) = <fun:it@10-1>

> let p : Parser<string> = presult "hi";;
val p : Parser<string>

> pzero;;
val it : (Input -> Outcome<'a>)

> let p : Parser<'a> = pzero;;
val p : Parser<'a>

There’s no magic here. Partially applying presult to "hi" returns a
parser. pzero already is a parser.

OK, one more primitive parser. This is where the magic begins.

let pitem(i: Input) : Outcome<char> =
if i = "" then

Failure(0, "pitem")
else

Success (i.[0], i.[1..])

The pitem parser attempts to read in one character. Notice that the
type of the Outcome is char. If it can read one character, then it returns
that one character as the result (i.[0]) part of the Success value,
putting the rest of the string (i.[1..]) in the remainder part. Oth-
erwise, it fails.

Combining forms

Ok, we have three primitive parsers now. How do we “glue” them to-
gether? All combining forms are based on one idea, called “bind”.

let pbind(p: Parser<'a>)(f: 'a -> Parser<'b>)(i: Input) : Outcome<'b> =
match p i with
| Success(a,i') -> f a i'
| Failure(pos,rule) -> Failure(pos,rule)

Notice that we are prefixing all of our parser functions with the letter
p. This is just to make it clear which functions belong to the primitive
parsing library. You can name your functions whatever you want.

pbind takes a Parser<'a>, p, and a function f from 'a to a new Parser<'b>,
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and returns a new Parser<'b>. Why do I say that it “returns a new
parser” when that’s not precisely what the definition says? Well, look
carefully in the REPL; it does say that. You’re just not accustomed to see-
ing it yet. Here’s an example of me partially-applying pbind.

> let p : Parser<char> = pbind pitem (fun c -> pitem);;
val p : Parser<char>

The key bit is that I left off the Input, i. Remember how I said that all
parser combinators take Input as their last argument, and, if you leave
it off, they’re parsers? This is what I meant. That returned parser does
the following:

1. Attempt to parse Input i with p.
2. On success, run f on the result of the successful parse, yielding a new

parser, p2.
3. Run p2 on the remainder of the first parse.
4. If p2 is successful, return the outcome of the second parse, otherwise

fail.

If you’re like me, you might be thinking “OK, I can see that you can
glue parsers together, but how is this useful?” Great question. I think
themost obvious answer is: don’t wewant to be able to parse more than
one character? So let’s see howwe can achieve that usingwhatwe know.

Parsing in sequence

Let’s construct a new combining form called pseq. We’ll use this to
parse two characters.

let pseq(p1: Parser<'a>)(p2: Parser<'b>)(f: 'a*'b -> 'c) : Parser<'c> =
pbind p1 (fun a ->

pbind p2 (fun b ->
presult (f (a,b))

)
)

The pseq parser is a “combining” function. It takes two parsers, p1
and p2, and runs them, one after the other, returning the result as a
pair of elements. Note that we use pbind in this definition, and presult
finally makes an appearance. We first bind p1 to a function that takes
p1’s result as input and then binds p2 to a function that takes p2’s result,
which is then handed to the presult parser, which takes both results
and runs function f on them. This may seem sort of abstract to you, but
if you work it out on paper, it’s not so bad. It captures everything we
need to say in order to parse two things in sequence.
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Now, notice, that this definition does not take an Input. Or does it?
Actually, it does! But we were able to leave it off. Why? Because p1, p2,
pbind, and presult also all take an i, and since we only ever partially
apply those functions, we are always “passing the buck” to the next
function in the chain. Since the entire body of the pseq function punts
on handling input, even though its components must handle input, it means
that pseq itself must handle input. In fact, that’s what the return type
says: Parser<'c>.

Part of the reason why this sort of melted my brain the first time I
saw it is that I kept thinking: but why don’t you just handle the input?
Wouldn’t the definition be clearer? The PL theorist who taughtme com-
binators thought the answer to this question was obvious (“NO!”) so
he didn’t spend much time on it. As a result, it took me a little time to
appreciate how much simpler partial application can make a program.
The gain in simplicity is especially profound when it is the case that all
of your functions pass around the same parameter (in our case, Input).

This fact sheds light on the popularity of a another model for pro-
gramming: object orientedprogramming. In thatmodel, youpass around
all kinds of parameters implicitly—you just stick that data inside an ob-
ject and pass the object around instead. So it solves the same problem,
but using a different mechanism. But unlike functional programming,
where you are forced to think about all of the data you need all of the
time, we sometimes forget about the data we stick in objects. In partic-
ular, we forget that we need to update it, leading to bugs. Functional
code forces us think about that data. The tradeoff is that we never have
stale values floating around in objects. Personally, functional program-
ming forced me to stop being lazy with objects, and the benefits—fewer
bugs—became immediately clear to me.

OK, enough chit-chat. Let’s use pseq to actually parse two characters.

let ptwo : Parser<string> =
pseq pitem pitem (fun (c1,c2) -> c1.ToString() + c2.ToString())

So we just constructed a parser that parses two characters, and then
takes the pair of characters, converts them to strings (remember a char
is not a string and in F# we have to explicitly convert them), and con-
catenates them, returning a string. Let’s try it.

> ptwo "hello world";;
val it : Outcome<string> = Success ("he","llo world")

Cool, huh? Watch what happens when the input does not have two
characters left.
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> ptwo "h";;
val it: Outcome<string> = Failure (0, "pitem")

Because we built up our parsers simply and from first principles, the
combined parser does the right thing.

End of file

There’s onemore essential parser that we need to specify, and it requires
that we change our definition of input a little. It is often necessary, for
example, in your “top level” parser, to be able to state “only succeed if
you’ve parsed all of the input.” In other words, we need to check that
we’ve reached the end of the input string.

Unfortunately, nowhere in our definition of Input do we maintain a
notion of “the end”. We probably should. Let’s modify our definition
of Input just a little. 61 61 Note that the combinator library

that comes with your starter code,
Combinator.fs, has an even fancier
definition for Input for efficiency. The
basic idea is the same, but note that the
definition is slightly different. Have a
look if you are curious. I try to make our
libraries easy to read.

type Input = string * bool

Now Input is a pair of string and bool. The bool representswhether
we’ve found the end. This is useful because often a parser definition,
which is composed of many little parsers, slices and dices the input into
many pieces, and those pieces themselves are sliced and diced. With-
out tracking the “real end” of the string, we might be tempted to think
that “the end” was merely the end of the input string. But if we’ve cut
the string in half somewhere, that most definitely will not be the case.
There’s only one end!

This affects the definition of pitem above, but not by much. In fact,
it doesn’t change at all how we use them, just whether we can actually
test for EOF. Here’s a definition of an EOF parser:

let peof(i: Input) : Outcome<bool> =
match pitem i with
| Failure(pos, rule) ->

if snd i = true then
Success(true, i)

else
Failure(pos, rule)

| Success(,) -> Failure((position i), "peof")

First, peof tries to get a character, and if that fails and we’re at the real
end of the string, succeed. Otherwise, fail.

Here’s a little function that we can call on our input string to turn
it into an Input so that the user does not have to think about how to set
up an Input the first time.
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let prepare(input: string) : Input = input, true

A zillion more little parsers

Hopefully now you have the basic idea. You can make and combine
parsers from other parsers. That combined parser can be called using
string input, and it returns what you ask. At each step, you provide
a function f that says exactly how to build the data structure that you
return in the end (e.g., “concatenate two characters into a string”). It
can be whatever you want.

In this section, I am going to tell you about a collection of other useful
parsers. I am not going to belabor their definitions, since you can just
look through the code and understand them if you need to. In many
cases, you will not need to. This, of course, is also not an exhaustive list
of parsers. Like I said, they build pretty much anything you want. The
set below is just a subset convenient to use for this course.
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Parser Type Description Example
presult 'a -> Input -> Outcome<'a> Takes a result value 'a

and an input and returns
Success.

pzero Input -> Outcome<'a> Takes an input and returns
Failure.

pitem Input -> Outcome<char> Reads a single character.
peof Input -> Outcome<bool> Takes an input and returns

true if and only if there is no
more input left to consume.

pbind p:Parser<'a> -> f:('a ->
Parser<'b>) -> Input ->
Outcome<'b>

Form for combining a
parser p in an arbitrary way
with another parser using
a function f.

pseq p1:Parser<'a> -> p2:Parser<'b>
-> f:('a * 'b -> 'c) ->
Parser<'c>

Combine two parsers p1
and p2 in sequence, and
combine their results using
a function f.

pseq pitem pitem (fun (a,b) ->
(a,b) parses two characters and
returns them as a 2-tuple.

psat f:(char -> bool) ->
Parser<char>

Read a character, and if
it satisfies the predicate
f, successfully return the
character.

psat (fun c -> c = 'z') parses
the character z

pchar c:char -> Parser<char> Read a character, and if it is
the same as the given char-
acter c, successfully return
it.

pchar 'z' parses the character z

pletter Parser<char> Reads a character and
returns successfully if the
character is alphabetic.

pletter parses any alphabetic letter.

pupper Parser<char> Reads a character and
returns successfully if the
character is uppercase
alphabetic.

pupper parses any uppercase alpha-
betic letter.

pdigit Parser<char> Reads a character and
returns successfully if the
character is numeric.

pdigit parses any numeral.

<|> p1:Parser<'a> -> p2:Parser<'a>
-> string * bool ->
Outcome<'a>

Ordered choice. Note that
this is an infix combinator,
for readability. First tries
the parser p1, and if that
fails, it backtracks the in-
put and tries parser p2. The
first parser to succeed re-
turns the result. If both
parsers fail, choice fails.

(pchar 'a') <|> (pchar 'b')
parses either the character a or the
character b.

|>> p:Parser<'a> -> f:('a -> 'b)
-> Parser<'b>

Function application. Ap-
plies the function f to the
result of p if p is successful.

pdigit |>> (fun c -> int
(string c)) converts a numeric
character into an integer.
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Parser Type Description Example
pfresult p:Parser<'a> -> x:'b ->

Parser<'b>
Run parser p and if success-
ful, return result x. This ba-
sically ignores the output of
p.

pfresult (pchar 'a') 'b' returns
the character b when it finds a.

pmany0 p:Parser<'a> -> string * bool
-> Outcome<'a list>

Parse zero or more occur-
rences of p in sequence,
stoppingwhen p fails. Note
that this parser never fails!

pmany0 pletter parses a sequence
of letters, stopping when no more
letters can be found.

pmany1 p:Parser<'a> -> Parser<'a
list>

Parse one or more occur-
rences of p in sequence,
stopping when p fails. To
succeed, p must succeed at
least once.

pmany1 pletter parses a sequence
of letters of length 1 or more.

pws0 Parser<char list> Parses a sequence of zero
or more whitespace charac-
ters.

pws0

pws1 Parser<char list> Parses a sequence of one
or more whitespace charac-
ters.

pws1

pnl Parser<string> Parses a newline. Returns a
string instead of a char be-
cause newlines are actually
two characters onWindows
machines.

pnl

pstr s:string -> Parser<string> Parses the string literal s. pstr "helloworld" parses
helloworld and only helloworld.

pleft p1:Parser<'a> -> p2:Parser<'b>
-> Parser<'a>

Parses p1 and p2 in se-
quence, returning only the
result of p1. Discards the
result of p2.

pleft (pchar 'a') (pchar 'b')
parses ab but only returns a.

pright p1:Parser<'a> -> p2:Parser<'b>
-> Parser<'a>

Parses p1 and p2 in se-
quence, returning only the
result of p2. Discards the
result of p1.

pright (pchar 'a') (pchar 'b')
parses ab but only returns b.

pbetween popen:Parser<'a>
-> p:Parser<'c> ->
pclose:Parser<'b> ->
Parser<'c>

Parses p in between parsers
popen and pclose. Dis-
cards the resuls of popen
and pclose.

pbetween (pchar '(') (pmany0
pletter) (pchar ')') returns abc
when given (abc).

<!> p:Parser<'a> -> label:string
-> string * bool ->
Outcome<'a>

Debug parser. This parser
applies p and, as a side ef-
fect, prints some diagnostic
information given a label.
Very useful for figuring out
why a parser succeeds or
fails on a given input.

pletter <!> "letter"

stringify cs:char list -> string Convert the char list
called cs into a string.

stringify
['h';'e';'l';'l';'o'] returns
hello
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An example: parsing English sentences

Lets’s build a small parser for parsing well-formed English sentences.
As you will see, it’s not hard to find the limitations of this parser. But
after we build this together, you should have a good idea about how you
could extend it to parse more complex sentences.

First, what is an “English sentence”? Here’s some BNF:

<sentence> ::= <upperword> (<ws> <word>)* <period>
<upperword> ::= <upperletter> (<letter>)*
<word> ::= (<letter>)+
<upperletter> ::= 'A' | 'B' | ... | 'Y' | 'Z'
<lowerletter> ::= 'a' | 'b' | ... | 'y' | 'z'
<letter> ::= <upperletter> | <lowerletter>
<ws> ::= ' ' | 'n' | 't' | "rn"
<period> ::= '.'

Let’s further stipulate that the “structure” that I want to return from
my parser is a list of the words in the sentence. A string list should
work nicely. I would also like to know whether the parse succeeded or
failed, so let’s wrap our string list in an option type62. So our end 62 https://docs.microsoft.

com/en-us/dotnet/fsharp/
language-reference/options

result will be a function like:

let parse(input: string) : string list option =
... whatever ...

When building a parser using combinators, you can either start at the
top of your grammar and work your way down or you can start at the
bottom and work your way up. I’m sort of a bottom-up thinker, so we’ll
start with the simplest parts; the ones that parse terminals.

Period has a simple grammar rule with only one terminal. Should be
easy.

let period = pchar '.'

This is hopefully self-explanatory.
Whitespace, as it turns out, is built-in. Let’s say, for now, that pws1 is

what we want.
OK, arbitrary letters. Again, we already have a parser for this called

pletter that parses both uppercase and lowercase letters. We also have
parsers for uppercase only (pupper) and lowercase onle (plower).

How about words? Our word production says:

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
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<word> ::= (<letter>)+

What does thatmean? We’re using an “extended” formof BNF called
EBNF here that lets us write repetitionmore concisely. +means “at least
one”. So what this says is “at least one <letter>”. We can unroll this if
we want into regular BNF.

<word> ::= <letter> <word>
| <letter>

So a <word> really is a recursive definition that requires at least one
<letter>. Fortunately for us, we don’t have to think too hard about rep-
etition, because there’s a parser combinator that means “one or more”
called pmany1. So a word is:

let word = pmany1 pletter

Which is great and all, but almost what we want. Remember how I said
that we wanted a “list of words” back and I said that this translated into
a string list? Well, what does pmany1 pletter actually return?

> let word = pmany1 pletter
val word : Parser<char list>

It actually returns a list of characters. Although I think we all can
agree that a list of characters is pretty much a string, we have to actually
convert one into the other to keep F# happy. We do that using the |>>
combinator.

> let word = pmany1 pletter |>> (fun cs -> System.String.Join("", cs))
val word : Parser<string>

That’s better.
Because we often translate lists of characters into strings, I’ve pro-

vided the stringify function that does this for you. So we can rewrite
word a little more simply.

let word = pmany1 pletter |>> stringify

Let’s test our work up until this point. Remember that we need to call
prepare on our input string before we can give it to our parsers.

> word (prepare "foobar");;
val it : Outcome<string> = Success ("foobar",("", true))
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That looks promising. How does it handle a space in the middle?

> word (prepare "foo bar");;
val it : Outcome<string> = Success ("foo",(" bar", true))

Notice that it succeeds, but only returns "foo". "bar" is left in the re-
mainder. This makes sense because word doesn’t know anything about
spaces.

> word (prepare " foo bar");;
val it : Outcome<string> = Failure

This also looks good. There are words in the string, but the string
starts with a space. Again, word doesn’t know anything about spaces so
it fails.

How about words that start with an uppercase letter?

<upperword> ::= <upperletter> (<letter>)*

Again, this is EBNF. The * operator means “zero or more”. So an up-
percase word must be at least one uppercase letter followed by zero or
more letters of any case. Unrolled into regular BNF:

<upperword> ::= <upperletter> <word>
| <upperletter>

As before, thinking about this recursively is a useful exercise, but we
have a parser that makes our lives easier. pmany0 parses zero or more
occurrences of a parser. How do we parse first an uppercase letter and
then zero or more letters of any case? Anytime your parsing logic is of
the form “first parse this then parse that” you’re talking about parsing
sequences. The pseq parser is for parsing sequences of elements.

let upperword = pseq pupper (pmany0 pletter)

As before, we want to get back a string, but what this gives us back
is kind of a mess. pmany0 pletter returns a char list, pseq returns a
tuple, and pupper returns a char, sowhatwe get is a char * char list.
Fortunately, pseq also expects a function that lets us sort it all out. We
want a string.

> let upperword = pseq pupper (pmany0 pletter) (fun (x,xs) -> stringify (x::xs));;
val upperword : Parser<string>

Now it does what we want!
OK, where are we? We can parse uppercase words and other words.
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What is the form of a sentence? From our BNF above, it really has
two pieces. Let’s switch fromworking bottom-up toworking top-down.
Hopefully we can meet in the middle somewhere.

<sentence> ::= <upperword> (<ws> <word>)* <period>

There’s a prefix, which is the first uppercase word and a middle part,
which is spaces and words. Then there’s a suffix, which is the period.
When you have a complicated production rule, thinking in terms of pre-
fixes and suffixes helps a lot. Note that we could have divided this in
many different ways. Let’s make a top-level sentence parser with these
parts and then flesh each piece out.

let sentence = pleft prefix period

pleft applies two parsers but only returns the result of the one on
the left. So sentence just returns the result of prefix, which makes
sense because we don’t actually care about putting a period in our list
of words.

prefix also has two parts: an uppercase word and then zero or more
whitespace-separated words.

let prefix = pseq upperword words0 (fun (w,ws) -> w::ws)

We are calling “zero or more whitespace-separated words,” words0.
OK, so clearly upperword returns a string. And hopefully, we can build
words0 so that it returns a string list. If that’s what we’re getting
back, then combining them should be simple: just cons the uppercase
word to the list of words from words0. Fortunately, pseq wants a func-
tion that asks us how to combine its two pieces, so we tell it to combine
using cons.

Let’s define words0 now. So we want zero or more words prefixed by
whitespace.

let words0 = pmany0 (pright pws1 word)

pright is like pleft except that it returns the result from the parser
on the right, in this case, a word. Without any more work, this already
does what we want, see?

> let words0 = pmany0 (pright pws1 word);;
val words0 : (Input -> Outcome<string list>)

which, of course, is a Parser<string list>.
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We’re almost done! We just have to define a top-level parser now.
Out of habit, I always call this top-level parser grammar. grammar really
only does one thing: it calls our parser andmakes sure thatwe’ve parsed
all of the input. Remember that many parsers (like word) will happily
nibble off only a part of the input and leave the rest behind. To ensure
that all the input is consumed, we make sure that the only thing left is
EOF by concluding with the peof parser.

let grammar = pleft sentence peof

Sincewedon’t really carewhat peof returns—just that it’s successful—
we use pleft with our sentence parser.

Here is the complete program alongwith a little main function so that
you can try it out using dotnet run.

open Combinator

let period = (pchar '.')
let word = pfun (pmany1 pletter) (fun cs -> stringify cs)
let upperword = pseq pupper (pmany0 pletter) (fun (x,xs) -> stringify (x::xs))
let words0 = pmany0 (pright pws1 word)
let prefix = pseq upperword words0 (fun (w,ws) -> w::ws)
let sentence = pleft prefix period
let grammar = pleft sentence peof

let parse input : string list option =
match grammar (prepare input) with
| Success(ws,_) -> Some ws
| Failure(_,_) -> None

[<EntryPoint>]
let main argv =

if argv.Length <> 1 then
printfn "Usage: dotnet run <̈sentence>"̈
exit 1

match parse argv.[0] with
| Some ws -> printfn "Sentence: %A" ws
| None -> printfn "Invalid sentence."
0

Theparsers I describe above are available in amodule called Combinator.fs
which is available on the course website.

Let’s run our program.

$ dotnet run "This is a sentence."
Sentence: ["This"; "is"; "a"; "sentence"]



134

Debugging parsers

While you can go around sticking printfn statements into your combi-
nator code when things don’t go as planned, there’s a much better way
to debug: the debug parser, <!>. Here’s a version of the same program
but this time decorated with debug parsers.

open Combinator

let period = (pchar '.') <!> "period"
let word = pfun (pmany1 pletter) (fun cs -> stringify cs) <!> "word"
let upperword = pseq pupper (pmany0 pletter) (fun (x,xs) -> stringify (x::xs)) <!> "upperword"
let words0 = pmany0 (pright pws1 word) <!> "words0"
let prefix = pseq upperword words0 (fun (w,ws) -> w::ws) <!> "sprefix"
let sentence = pleft prefix period <!> "sentence"
let grammar = pleft sentence peof <!> "grammar"

let parse input : string list option =
match grammar (debug input) with
| Success(ws,_) -> Some ws
| Failure(_,_) -> None

[<EntryPoint>]
let main argv =

if argv.Length <> 1 then
printfn "Usage: dotnet run <̈sentence>"̈
exit 1

match parse argv.[0] with
| Some ws -> printfn "Sentence: %A" ws
| None -> printfn "Invalid sentence."
0

Observe that we changed prepare input in our main method to debug
input. The difference is that debug sets an internal debugging flag to
truewhereas prepare sets it to false. The two functions are otherwise
the same. When a debug parser, always written like <!> "rule", en-
counters a debugging flag set to true, it prints diagnostic information,
including rule, to the terminal.

Let’s run this program.
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$ dotnet run "This is a sentence."
[attempting: grammar on "This is a sentence.", next char: 0x54]
[attempting: sentence on "This is a sentence.", next char: 0x54]
[attempting: sprefix on "This is a sentence.", next char: 0x54]
[attempting: upperword on "This is a sentence.", next char: 0x54]
[success: upperword, consumed: "This", remaining: " is a sentence.", next char: 0x20]
[attempting: words0 on "This is a sentence.", next char: 0x54]
[attempting: word on "This is a sentence.", next char: 0x54]
[success: word, consumed: "is", remaining: " a sentence.", next char: 0x20]
[attempting: word on "This is a sentence.", next char: 0x54]
[success: word, consumed: "a", remaining: " sentence.", next char: 0x20]
[attempting: word on "This is a sentence.", next char: 0x54]
[success: word, consumed: "sentence", remaining: ".", next char: 0x2e]
[success: words0, consumed: " is a sentence", remaining: ".", next char: 0x2e]
[success: sprefix, consumed: "This is a sentence", remaining: ".", next char: 0x2e]
[attempting: period on "This is a sentence.", next char: 0x54]
[success: period, consumed: ".", remaining: "", next char: EOF]
[success: sentence, consumed: "This is a sentence.", remaining: "", next char: EOF]
[success: grammar, consumed: "This is a sentence.", remaining: "", next char: EOF]
Sentence: ["This"; "is"; "a"; "sentence"]

With this latter version, when things go wrong, we can see why.

$ dotnet run "This is a sentence"
[attempting: grammar on "This is a sentence", next char: 0x54]
[attempting: sentence on "This is a sentence", next char: 0x54]
[attempting: sprefix on "This is a sentence", next char: 0x54]
[attempting: upperword on "This is a sentence", next char: 0x54]
[success: upperword, consumed: "This", remaining: " is a sentence", next char: 0x20]
[attempting: words0 on "This is a sentence", next char: 0x54]
[attempting: word on "This is a sentence", next char: 0x54]
[success: word, consumed: "is", remaining: " a sentence", next char: 0x20]
[attempting: word on "This is a sentence", next char: 0x54]
[success: word, consumed: "a", remaining: " sentence", next char: 0x20]
[attempting: word on "This is a sentence", next char: 0x54]
[success: word, consumed: "sentence", remaining: "", next char: EOF]
[success: words0, consumed: " is a sentence", remaining: "", next char: EOF]
[success: sprefix, consumed: "This is a sentence", remaining: "", next char: EOF]
[attempting: period on "This is a sentence", next char: EOF]
[failure at pos 18 in rule [pchar '.']: period, remaining input: "", next char: EOF]
[failure at pos 18 in rule [pchar '.']: sentence, remaining input: "", next char: EOF]
[failure at pos 18 in rule [pchar '.']: grammar, remaining input: "", next char: EOF]
Invalid sentence.
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Oops! It looks like we forgot the period.

Performance

One thing you may notice while playing with combinators is that the
performance is not always stellar. There are a few reasons.

First, this library is not optimized in anyway. It’s designed as a teach-
ing tool. If you want a commercial-grade combinator parsing library,
you should look elsewhere. FParsec63 is a good, open-source library 63 http://www.quanttec.com/fparsec/

that I use a lot.
Second, backtracking parsers are expensive, because when they fail,

other alternatives are explored. For example, if you peek at the imle-
mentation for the choice combinator, <|>, you will see that it does just
that. When producing a commercial-grade parser, you will want to in-
vest some time in optimizing your code. These optimizations are largely
outside the scope of this class.

Finally, there is a cost to using higher-order functions, although the F#
compiler does do a respectable job about optimizing away obvious inef-
ficiencies. Still, hand-written parsers, not using parser libraries like com-
binators, will always be faster, especially when written in unsafe lan-
guages like C. Consequently, some of the fastest parsers are written in
C. When performance is critical, as is often the case for code that parses
network messages, hand-written parsers coded in C are the norm.64 64 Producing high-performance network

code in programming languages that
guarantee safety properties is an area
of active research. A good example is
Project Everest, which aims to produce
bug-free, high-performance crypto-
graphic libraries for networking. https:
//project-everest.github.io/Parsing theory is good, but is hard to apply in practice

Before we conclude, let’s revisit my comments about parsing theory.
As I stated before, there is a great deal of research on parsing. In fact,
some parsers can be generated automatically from grammar specifi-
cations. Generated parsers are sometimes blazingly fast because they
are designed to emit C code that is the moral equivalent of one big
switch statement, something called a table-driven parser. The chief diffi-
cultywith parser generators, however, is that youmust know the formal
grammar class of your language ahead of time. Is your language “deter-
ministic context-free?” Use an LR parser. Is it “regular”? Use regular
expressions.

In practice, it is difficult to know for sure to what class your language
belongs until you try to write a parser. And even though we can gener-

http://www.quanttec.com/fparsec/
http://www.quanttec.com/fparsec/
https://project-everest.github.io/
https://project-everest.github.io/
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ate parsers, this does not mean that it is “no work” to generate the spec-
ification for the parser generator. In my experience, I am often deep
into a parser implementation when I make the discovery that a given
parser generator was a poor choice. One is then faced with the difficult
decision of having to change the syntax or throw out the entire imple-
mentation and start over again with a different parser generator. People
who do this work more often than me may have a better intuition for
which parser generators are good for which jobs. Nevertheless, when I
discovered combinators, I stopped using parser generators entirely and
never looked back.

The fact that the “best” parsing algorithm can be chosen based on the
grammar class of your language is why theoretical computer scientists
call parsing a “solved problem.” Like many things in computer science,
theory is a good guide, but ultimately, the proof is in the pudding.65 65 The original saying is “the proof of the

pudding is in the eating.” It means that
you need to try something yourself to
know whether it is good. Have you ever
tried coding something up for fun? You
should. The experience is worth having,
even if you don’t accomplish what you
set out to do.





Evaluation

We now come to the heart of what a programming language does. In the
previous chapter, we discussed how to convert a string into a form that
the computer can use, which we call the AST. Here, we discuss how to
use the AST to compute something.

High-level discussion of evaluation can become abstract and complex
without an example, so let’s define a small language to help ground
things. An easy place to start is a calculator program. Let’s keep things
simple and define a calculator that can only add. Let’s also stipulate that
+ takes exactly two operands. Finally, because infix operators66 compli- 66 An infix operator is an operator that

appears, syntactically, between two
arguments in an expression. 2 + 3
is an infix expression. The problem
arises when you have expressions
like 2 / 3 / 4, which are ambiguous
without extra parsing rules. Which
/ operator is evaluated first? If you
parse this expression incorrectly, your
evaluator will produce the wrong result.
Unlike infix operators, languages with
operators in prefix form do not have
ambiguous parses.

cates parsing, let’s specify that operators should appear in prefix form.
In other words, the following is a valid program in our language.

+ 2 3

The abovemeans the same thing as 2 + 3 but is easier to parse. How-
ever, we should also be able to compute compound expressions like

+ + 1 + 2 3 + 4 5

For the above expression, our parser should produce the following
AST:

+

+ +

+1

2 3

4 5

Our formal grammar is relatively uncomplicated, and might look
something like the following.
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<expr> ::= + <expr> <expr>
| <num>

<num> ::= <digit>+

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Be aware that the + and + symbols have different meanings. The +
symbol stands for a literal plus sign character in our grammar. By con-
trast, + means one or more, and it allows us to define syntax for multi-
digit numbers.

PLUSLANG AST

To start, we need to define the AST that we want. Since expressions in
this language have two cases, either numbers or plus-expressions, we
should define an F# type that captures that fact. Here’s one way you
might do it.

type Expr =
| Num of int
| Plus of Expr * Expr

PLUSLANG Parser

Next, we need a parser that turns valid PLUSLANG strings into instances
of the above Expr. Since you already know how parser combinators
work, I provide a complete parser here without walking you through
every line.

let expr,exprImpl = recparser()
let pad p = pbetween pws0 p pws0
let num = pmany1 pdigit |>> (fun ds -> stringify ds |> int |> Num)
let numws0 = pad num
let plusws0 = pad (pchar '+')
let plusExpr = pseq (pright plusws0 expr) expr Plus
exprImpl := plusExpr <|> numws0
let grammar = pleft expr peof

Two features of this program require more explanation. The sim-
plest of the two, pad, is a combinator I define above to allow for optional
whitespace around something. For example, pad (pchar '+') means
that I could accept the strings "+" or " +" or " + " or any other with
arbitrary amounts of space characters. The second, more complicated
thing, is recparser.

We need to use recparser because our grammar is recursive. You
can see that in our formal grammar right here:
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<expr> ::= + <expr> <expr>

Due to limitations in the way F# defines functions, a recursive parser
definition using combinators is a little tricky. A naïve definition pro-
duces an F# compilation error. For example, we cannot define expr this
way, even though such a definition does not seem obviously wrong:

let expr = plusExpr <|> numws0

The reason is that plusExpr contains expr within its own definition.

let plusExpr = pseq (pright plusws0 expr) expr Plus

Most functional languages like F# are strict about the order in which
things are defined. If wewant to use plusExpr in the definition for expr
then plusExpr must be defined before expr. But if plusExpr contains
expr in its own definition, then expr must be defined before plusExpr.
This contradiction means that we cannot define recursive definitions
quite as simply as we might hope.

Instead, we use recparser. The recparser combinator lets us sepa-
rate the declaration of a parser from its definition. You’ve seen the separa-
tion of declaration and definition before in another programming lan-
guage, namely Java.67 For example, suppose we have the following Java 67 Separating interface from implemen-

tation is a fundamental technique for
abstraction in computer science, and it’s
the reason why features like pointers
or references exist in programming
languages.

interface.

interface Honkable {
public String honk();

}

This interface declares that anything Honkable must have a honk
method, but it does not provide code to make anything honk. With the
Honkable interface in hand, we can define something Honkable later.

class Car implements Honkable {
public String honk() {
return "beep!";

}
}

Our use of recparser is similar. While F#’s type inference (thank-
fully) hides some detail from us, the following expression declares a
parser called expr.

let expr,exprImpl = recparser()
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From this point forward, we can use the name expr whereever we
want. However, expr’s implementation is not yet defined. To define
it, we use the := operator.68 68 The := operator stands for mutable

assignment. I won’t go into detail here,
but it suffices to say that recparser uses
mutable variables to get around expr’s
recursive definition problem. There is
a “purely functional” alternative, but
it makes combinators harder to use, so
in the interest of enhancing the quality
of your life I chose this slightly icky
approach instead.

exprImpl := plusExpr <|> numws0

PLUSLANG Evaluator

Now that we have an AST defined and a parser that can construct ASTs
from valid strings, we need to say what an expression in PLUSLANG
means. An evaluator is a function that takes an AST and does something.
What does depends on what you want the parts of the language to
mean.

Conventionally, we name the evaluator for a programming language
eval.69 Our language should add numbers together. 69 Some programming languages actu-

ally expose their eval function in the
language itself. Javascript is one such
language. Being able to call such a func-
tion is “meta” in the true sense of the
word, which makes it very cool but also
dangerous.

Here is where F#’s types are incredibly useful. Our Expr type has
two cases. An expression could either be a number or the addition of
two expressions. Therefore, our eval functionmust also have two cases.
The eval function must also be recursive, because Expr itself is recur-
sive. Wewill use patternmatching to distinguish between the two cases.
Our solution will look something like this:

let rec eval ast : Expr =
match ast with
| Num n -> . . .

| Plus (left, right) -> . . .

Observe that eval takes an Expr and returns an Expr. You might
be wondering how that can be useful. In general, an evaluator tries to
simplify an expression. The simplest kind of expression in our language
right now is a number. We can think of a number as a primitive in our
language. This explains why we take an Expr and return an Expr. We
might start with a complex expression, but at the end, we will have a
simple expression, ideally just a number. Since a number is an Expr,
that’s what we return. Therefore, for each case, we must ask “how can
I get a number out of this?”

For the first case, when we see a number n, there’s not really much to
do. It’s already a number. So we just return it.

| Num n -> Num n

What about the second case, when we see a plus-expression? Could
we just do the following?
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| Plus (left, right) -> left + right

Sadly, the answer is no. If you try it, you will discover that left and
right are Exprs and that F# will produce a compilation error. Since we
ourselves defined Expr, and because we did not define the + operation
for Expr, F# does not know what the above expression means. Further-
more, since left and right are themselves expressions, they might not
be simple numbers. After all, the left operand might be the AST sub-
tree representing + 2 3, which is also not something a computer knows
how to add. We have to evaluate expressions recursively.

| Plus (left, right) ->
let n1 = eval left
let n2 = eval right
. . .

Now what? Well, if those recursive calls to eval did their jobs cor-
rectly, then we know that we got numbers back. Still, we can’t just add
them, because F# itself will not be convinced that they are Nums. Af-
ter all, eval returns an Expr. To work around this, we simply pattern
match. And if, for some reason we made a mistake in our implementa-
tion and we don’t get numbers back, we can catch the error.

| Num n -> Num n
| Plus (left, right) ->

let r1 = eval left
let r2 = eval right
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2)
| _ -> failwith "Can only add numbers."

I claim that this definition is good, but why? Let’s think back about
whatmakes recursive programswork. First, theymust have a base case.
Second, they must have a recursive case that reduces the problem toward
the base case. Do we have those two things?

If ast is just a Num, then that’s our base case, and we just return the
number itself. Check.

If ast is more complicated, thenwe break it into two pieces, left and
right. Both left and right are smaller than ast since they are the left
and right parts of the addition expression, respecively. Consequently,
when we make our recursive calls, we reduce the problem toward the
base case. Check.

Therefore, the above solution should work fine.
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+

+1

2 3

Figure 17: The AST for the subexpres-
sion + 1 + 2 3.

What’s Going On?

You might feel like the above explanation about evaluation is too brief.
What’s really going on when we evaluate code?

In short, an evaluator performs a traversal of an AST.When an AST is
in its conventional form, where interior nodes are operators and where
leaves are values, then evaluation can usually be performed by doing a
pre-order traversal.70 Let’s examine how we might evaluate the subex- 70 Don’t remember what a pre-order

traversal is? The name of the traver-
sal tells you what order it visits data
relative to a subtree’s root. A pre-order
traversal visits children before the root.
A post-order traversal visits children after
the root.

pression + 1 + 2 3. It has the tree shown in Figure 17.
Like all traversals, we start at the root. What dowe knowat the root of

this subtree? Whatwe know is captured in thematching pattern | Plus
(left, right). We know that the node must add two things, and we
know that those two things are called left and right. The type of left
and of right is Expr. We know that because that’s what the Plus case of
the Expr type tells us in | Plus of Expr * Expr. Unfortunately, that’s
all we know. Importantly, we do not know the numeric values of left
and right. If left and right are themselves complex expressions (i.e.,
they are plus-expressions), then we need to do some work to determine
their values.

This uncertainty is why we tend to evaluate ASTs recursively. We
continue to recurse untilwe can’t anymore: at that point, wehave reached
a leaf. Recall that a leaf is a value. When we reach a leaf, we return its
value.

After visiting a leaf, the recursion unwinds back up the tree, carrying
returned values with it. Once a plus-expression’s left and right chil-
dren have been evaluated, the two are added and returned. The entire
process is shown in Figure 18.

Complete PLUSLANG Code

A complete implementation for PLUSLANG is shown in Listing 1. I do
not include the fsproj definition or the Combinator.fs library. As the
usage string suggests, you can run this program on the command line
like so
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+

+1

2 3
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visit
return

legend
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+1
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9

Figure 18: The order that the eval
function visits nodes in the expression’s
AST. On the left, outlined circles denote
when data is returned. Observe that
data is returned in a pre-order. On the
right, boxed numbers denote what data
is returned.

$ dotnet run "+ + 1 + 2 3 + 4 5"

which prints the following

Expression: Plus (Plus (Num 1, Plus (Num 2, Num 3)), Plus (Num 4, Num 5))
Result: Num 15
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Listing 1: A complete implementation for PLUSLANG aside from the
parsers defined in the Combinator library.
open Combinator

type Expr =
| Num of int
| Plus of Expr * Expr

let expr,exprImpl = recparser()
let pad p = pbetween pws0 p pws0
let num = pmany1 pdigit |>> (fun ds -> stringify ds |> int |>

Num)
let numws0 = pad num
let plusws0 = pad (pchar '+')
let plusExpr = pseq (pright plusws0 expr) expr Plus

exprImpl := plusExpr <|> numws0
let grammar = pleft expr peof
let parse input : Expr option =

match grammar (prepare input) with
| Success(ast,_) -> Some ast
| Failure(_,_) -> None

let rec eval ast : Expr =
match ast with
| Num n -> Num n
| Plus (left, right) ->

let r1 = eval left
let r2 = eval right
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2)
| _ -> failwith "Can only add numbers."

[<EntryPoint >]
let main argv =

if argv.Length <> 1 then
printfn "Usage: dotnet run \"<expression >\""
exit 1

match parse argv.[0] with
| Some ast ->

printfn "Expression: %A" ast
let result = eval ast
printfn "Result: %A" result

| None -> printfn "Invalid expression."
0



Package Management

Code designed specifically for reuse by others is called a software library.
We often use software libraries to simplify the development of complex
applications. Library functions for the most common tasks are often
supplied with the programming language installation itself. Such li-
braries of functions are often called the standard library, and all the most
popular programming languages (e.g., Python, Java, C) ship with stan-
dard libraries.

Nevertheless, the set of of things we might want to do with a com-
puter is much larger than any provided standard library. For example,
I might want to do some imagemanipulation tasks, like resizing images
or changing their colors. These functions are not common enough to be
included in a standard library, but they are still common enough that
somebody else—a so-called third party—may have written helper code.
Code distributed by a third party is called a package and a package man-
ager is a software tool that aids in downloading and installing packages.

A Brief History of Package Management

The first package manager appears to have been CTAN, the Comprehen-
sive TEXArchive Network. Founded in 1992, CTANmade it easy for TEX71 71 TEX is pronounced “tek” and it is the

underlying programming language for
the LATEX document preparation system
used widely by scientists and engineers.
LATEX is pronounced “lah-tek.”

programmers to share code. Importantly one of CTAN’s innovations
was a rigid, standardized package format so that package management
functions could be built directly into the LATEX ecosystem. It is no coin-
cidence that CTAN was founded around the time that the Internet first
became widely available at colleges and universities.72 Consequently, it 72 Williams College was first connected

to the Internet in 1987, thanks to the
efforts of the earliest members of the CS
department, Profs. Tom Murtagh and
Kim Bruce.

is usually very easy to incorporate someone else’s code using a package
manager. For example, this book was written in TEX (specifically LATEX)
and, as of this writing, it uses 26 packages written by other people as
well as a book template inspired by Edward Tufte (tufte-latex).

Packagemanagers are now a standard part of new programming lan-
guages. Languages that eschew package management make it hard for
programmers to be productive, and with the exception of C, I bet you’d
be hard pressed to name a popular programming language that does
not have one. Perl added CPAN in 1995, Java followed with mvn in 2001,
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Ruby added the rubygems manager in 2004, and Python added the pip
manager in 2011. Newer languages like Rust andGo camewith package
managers from the beginning.

The .NET language framework, of which F# is a component, was a
little late to the party. .NET was initially released in 2002, but did not
acquire a package manager until 2010. Fortunately, anyone now writ-
ing .NET code has access to a very large collection of software pack-
ages through the NuGet package manager.73. Unusually, .NET allows 73 https://www.nuget.org/

library code written in C#, F#, and Visual Basic to seamlessly interoper-
ate. In fact, most of the packages available via NuGet are written in C#,
and with a little practice, you’ll find that using these packages in F# is
generally easy.

Using NuGet

To demonstrate using NuGet, in this section wewill develop a small im-
age manipulation program using the ImageSharp library.74 Although 74 https://github.com/SixLabors/

ImageSharpwe could certainly download and use the code directly from GitHub
where the project is hosted, it is easier to download precompiled pack-
ages via NuGet.

Let’s start by creating a new console project.

$ mkdir nuget-helloworld
$ cd nuget-helloworld
$ dotnet new console -lang f#

To add a package to your project, you will need to use the
dotnet add package command. We specifically want to use the
SixLabors.ImageSharp.Drawing package.75 Although this package it- 75 https://www.nuget.org/packages/

SixLabors.ImageSharp.Drawingself depends on another set of packages, NuGet is smart enough to know
that youmust also download these dependencies, and it does so automat-
ically.

If we visit the webpage for this package, we should see a small infor-
mation panel like the one shown below.

https://www.nuget.org/
https://github.com/SixLabors/ImageSharp
https://github.com/SixLabors/ImageSharp
https://www.nuget.org/packages/SixLabors.ImageSharp.Drawing
https://www.nuget.org/packages/SixLabors.ImageSharp.Drawing
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Be sure to select the tab labeled .NET CLI and then copy and paste
the command shown into your terminal.

$ dotnet add package SixLabors.ImageSharp.Drawing --version 1.0.0-beta15

The dotnet command will print some progress information, but as-
suming things go OK, the package should now be installed inside your
project. You can verify that it was added correctly by looking at your
nuget-helloworld.fsprojfile. Inmine, the following sectionwas added.

<ItemGroup>
<PackageReference Include="SixLabors.ImageSharp.Drawing" Version="1.0.0-beta15" />

</ItemGroup>

Using the ImageSharp.Drawing library

Every library will have its own application programming interface, or
API, but I show you the steps I went through here because many of the
small issues outlined below come up whenever you use C# code in F#.
Documentation and sample code are available via the README page
in the ImageSharp GitHub page. I have included one of the examples,
written in C#, below.

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Processing;

namespace ResizeImage
{

static class Program
{

static void Main(string[] args)
{

using Image image = Image.Load(args[0]);
image.Mutate(x => x

.Resize(image.Width / 2, image.Height / 2)

.Grayscale());

image.Save("mutated-" + args[0]);
}

}
}

Let’s adapt this example toworkwith F#. C# is very similar to Java, so
your experience programming Java should help you with this task. We
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can see that this program imports two libraries76 and then has a main 76 C# uses the using keyword to import
libraries instead of the import keyword
that Java uses, but they function the
same way.

method. We know how to do both of those things in F#, so let’s start
there.

open SixLabors.ImageSharp
open SixLabors.ImageSharp.Processing

[<EntryPoint>]
let main args =
0

Observe that I ignored the C# namespace keyword. C# namespaces
are very much like F# modules, and we certainly could have added
one, but for an example this small it is easy to stay organized without
one. Also, observe that the C# program declares a static class
called Program. Again, we do not need to do this because F# is not
object-oriented like C#. To just make sure that F# can find the libraries
we just imported, let’s compile our program.

$ dotnet build

You should see a messages saying that the build succeeded. If you
do not, go back and check whether you missed any steps. Next, let’s
examine the first line of C# code that actually does something.

using Image image = Image.Load(args[0]);

This line of code reads a filename from the first command line argu-
ment (args[0]) and stores the image loaded from that path in a vari-
able called image. Note that the using keyword in this line does not
have the same meaning as when it is used to import libraries. Here, it
is used to automatically clean up objects that need to be “closed” be-
fore you are done with them. Such objects implement the IDisposable
interface and usually come with a Dispose() method. The using key-
word was created to address the fact that we often forget to close ob-
jects. Any IDisposable object created with the C# using keyword will
be closed automatically at the end of its scope. F# has a similar keyword
called use, which is a special form of let, otherwise the code is nearly
the same. Actually, it’s even simpler because we can rely on F#’s type
inference to determine that the type of image is Image.

use image = Image.Load(args[0])

The next line of C# code resizes the image by half and converts it to
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a greyscale image.

image.Mutate(x => x
.Resize(image.Width / 2, image.Height / 2)
.Grayscale());

Observe that the Mutatemethod takes a lambda expression. F# lambda
expressions can used anywhere C# lambda is used, with only small
changes to syntax.

image.Mutate (fun x ->
x.Resize(image.Width / 2, image.Height / 2)
.Grayscale())

Notice that the x parameter had to move down a line, as F# does not
like having it on the previous line. There’s one other issue owing to the
fact that F# is functional, and expects all returned values to be used. As
it turns out, Resize and Grayscale, return a kind of Image object, and
F# is unhappy that we do nothing with it. This is what I see when I try
to build the project.

nuget-helloworld/Program.fs(9,9):
error FS0193: Type constraint mismatch.
The type 'IImageProcessingContext' is not compatible with type 'unit'
[nuget-helloworld/nuget-helloworld.fsproj]

Whenever we’re in this situation, we can either bind that returned
value to a variable using let or tell F# to just ignore it. ImageSharp
functions are “side-effecting”77 and this is a common pattern in object- 77 In other words, they mutate state,

which a pure functional language will
never do.

oriented code, so ignoring returned objects is also common. The F#
ignore keyword tells the compiler that it is OK to ignore this object.

image.Mutate(x => x
.Resize(image.Width / 2, image.Height / 2)
.Grayscale() |> ignore);

After running dotnet build again, the build succeeds.
Finally, we can keep the last line more or less as-is.

image.Save("mutated-" + args[0])

To test our completed program, we need an image to mutate. If your
computer has the curl command, you can use it to download an image
like so.78 78 You can also just use any png you

already happen to have on your com-
puter.

$ curl https://tinyurl.com/5ftvsn46 -o punk-rock-cow.png
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Let’s run our program.

$ dotnet run punk-rock-cow.png

The outputtedfile, mutated-punk-rock-cow.png is shown in Figure 19.
The complete F# program is shown in Figure 20.

Figure 19: A half-size, greyscale punk
rock cow.

open SixLabors.ImageSharp
open SixLabors.ImageSharp.Processing

[<EntryPoint>]
let main args =

use image = Image.Load(args.[0])

image.Mutate (fun x ->
x.Resize(image.Width / 2, image.Height / 2)
.Grayscale() |> ignore)

image.Save("mutated-" + args[0])

0

Figure 20: The sample code ported to F#.
We had to make a couple changes, but it
is very similar to the original.



Unit Testing in F#

Unit testing is a code testing method designed to demonstrate the cor-
rectness of code at the unit level. A unit is in terms of whatever the
smallest functional unit is within a given language or project. For ex-
ample, in functional code, a unit is often thought of as a module, func-
tion, or primitive operation. In object-oriented code, a unit is usually
a class and its methods. More generally, unit testing ensures that an
abstract data type (which is an abstract data structure and associated
operations) produces expected inputs and outputs.

It should be noted that unit testing is only one form of testing. Fur-
thermore, test procedures—unless they exhaustively test all possible
inputs—are not sufficient to ensure the correctness of a unit. Neverthe-
less, tests are one of the easiest ways to check that a program behaves as
expected and tests are one of the most important steps toward correct-
ness. Tests are especially useful in helping to ensure that the addition
of new features to a codebase does not change the expected behavior.
Consequently, test methods like unit testing are widely practiced in the
software industry.

Running example

We will be revisiting the code we built together as a part of the parser
combinator tutorial: the code that parses sentences into a list of words.
If you don’t remember what we did, please revisit the reading on Parser
Combinators.

In this tutorial, I encourage you to follow along on your ownmachine.
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MsTest

Microsoft .NET comes equippedwith a unit test framework calledMsTest.
Since MsTest has F# language bindings, we can write MsTest unit tests
natively in F#. The dotnet new command is capable of generating an F#
test project, however, in order tomake such a test project useful, it needs
to be combined with an existing F# console or library project. In .NET,
the facility for combining two projects together is an organizational fea-
ture called a solution.

.NET solutions

Let’s start by generating a solution thatwill tie an F# library and unit test
project together. Solutions are the standard way of combining projects
in .NET, and as long as all projects can be compiled on the .NET plat-
form, they can be combined. For example, a solution can be composed
of F#, C#, and Visual Basic projects, along with test projects, and so on.

First, create a new directory to house your solution and cd into it.

$ mkdir test_tutorial
$ cd test_tutorial

Now type:

$ dotnet new sln

If the solution is created successfully, you will see:

The template "Solution File" was created successfully.

Next, let’s create a very simple parser library. We will reuse the sen-
tence parser code developed in the chapter on Parsing.

$ mkdir SentenceParser
$ cd SentenceParser
$ dotnet new classlib -lang F#
The template "Class library" was created successfully.

First, download the Combinator.fs library79. Next, download the 79 https://williams-cs.github.
io/cs334-f22-www/assets/code/
Combinator.fs.txt

SentenceParser.fs library80. Note that these downloads are slightly dif-
80 https://williams-cs.github.io/
cs334-f22-www/assets/starter/
SentenceParser.fs.txt

ferent than example we worked through in Parsing. I’ve added some
extra information to both the Success and Failure types to help with

https://williams-cs.github.io/cs334-f22-www/assets/code/Combinator.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
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debugging. After downloading, you should have at least the following
files in your SentenceParser folder:

$ ls
Combinator.fs. Library.fs SentenceParser.fs SentenceParser.fsproj

Delete the auto-generated Library.fs file.

$ rm Library.fs

Open the SentenceParser.fsprojfile and add Parsers.fs and SentenceParser.fs
as compile targets. Remove the Library.fs target. Your SentenceParser.fsproj
should look like this:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<Compile Include="Combinator.fs" />
<Compile Include="SentenceParser.fs" />

</ItemGroup>

</Project>

Now, cd back into the parent directory and add the SentenceParser
project to the solution.

$ cd ..
$ dotnet sln add SentenceParser/SentenceParser.fsproj

If the project is added successfully, you will see:

Project `SentenceParser/SentenceParser.fsproj` added to the solution.

We should now be able to build our solution.

$ dotnet build

Note that, in a solution, all .fs library filesmust be inside a module or
a namespace. In the files supplied, the code in Combinator.fs is under
the Combinator module, and the code in SentenceParser.fs is under
the SentenceParser module. Go ahead, have a look. If you forget to
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do this for your own project, you will see a compile-time message like:
Files in libraries or multiple-file applications must begin with
a namespace or module declaration.

Creating the MsTest project

Now we can create the MsTest project and test our code. In the solution
directory, create a new directory called SentenceParserTests, cd into
it, and then use the dotnet tool to create an MsTest project.

$ mkdir SentenceParserTests
$ cd SentenceParserTests
$ dotnet new mstest -lang F#

If you did everything correctly, you should see:

The template "Unit Test Project" was created successfully.

We now need to make the SentenceParser a compile-time depen-
dency of the SentenceParserTests project so that the test framework
can call our library from test code.

$ dotnet add reference ../SentenceParser/SentenceParser.fsproj
Reference `..\SentenceParser\SentenceParser.fsproj` added to the project.

Finally, we need to cd back into our parent directory and add the
SentenceParserTests project to the solution.

$ cd ..
$ dotnet sln add SentenceParserTests/SentenceParserTests.fsproj
Project `SentenceParserTests/SentenceParserTests.fsproj` added to the solution.

Again, running dotnet build should successfully build the entire
project.

Understanding the test format

Let’s open up the SentenceParserTests/Tests.fs file and have a look.

$ cat SentenceParserTests/Tests.fs
namespace SentenceParserTests

open System
open Microsoft.VisualStudio.TestTools.UnitTesting
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[<TestClass>]
type TestClass () =

[<TestMethod>]
member this.TestMethodPassing () =

Assert.IsTrue(true);

This file contains one test, called TestMethodPassing. Since MsTest
was originally designed to test C#, tests utilize classes for organization.

Test suites. A collection of tests is called a test suite. Generally, a test
suite is a set of tests designed to test one unit. For example, an entire suite
might test different aspects of the same single algorithm. You might,
for instance, write a test that checks for the common case for a sorting
routine, another test that tests the corner case where the input is already
sorted, and another test that tests another corner case where the input
is empty (e.g., an empty list). All of these tests are packaged together in
a test class, which houses the test suite. Test classes that house test suites
must have the [<TestClass>] annotation as above.

Testmethods. Each test is called a testmethod. InMsTest, each testmethod
must literally be amethod inside a test class. The test suite shown above
has a single test called TestMethodPassing. There are two important
facts to note about test methods. First, the method is prefixed with the
[<TestMethod>] annotation. Second, test methods must be no-parens
functions; or more precisely, they need to F# functions that take unit.
The test above does nothing; it simply asserts true, which forces a test
to pass.

Note that it is up to you how you want to organize your tests into
test suites. Choose the organization that you find most useful. Out of
laziness, I usually just put all the tests for an entire module inside a single
test suite, and only break it into separate test suites once the test suite
has grown to an unmanageable size. Remember, programming is an art,
not a science!

Running the tests

If you are in the SentenceParserTests folder, you can run dotnet test
and you should see output that looks a bit like this.
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$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 1, Skipped: 0, Total: 1, Duration: 15 ms

Above, you can see that the entire test suite consisting of a single test
passed (Passed!) and took 15 milliseconds to run.

You can also run the dotnet test command from the parent direc-
tory which contains the solution. In that case, you will see test output
from every project that actually contain tests.

Adding a new test

Finally, let’s add a new test that actually tests our parser. In fact, let’s get
rid of the silly parser that always succeeds.

At the highest level, a hand-wavy description of our parser is that it
takes a string representing a sentence and turns it into a list of words.
The purpose of a test is to ensure that such hand-wavy descriptions are
backed up with real code that does what you say and is checked every
time you run the test suite. A nice side-effect of such tests is that they
serve to document use cases for your code.

First, add an open statement to the top of your SentenceParserTests/Tests.fs
file so that it can access your SentenceParser library.

open SentenceParser

Next, replace the test TestClass with a new one. Here is the com-
plete code for the Tests.fs file:
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namespace SentenceParserTests

open System
open Microsoft.VisualStudio.TestTools.UnitTesting
open SentenceParser

[<TestClass>]
type TestClass () =

[<TestMethod>]
member this.ValidSentenceReturnsAWordList() =

let input = "The quick brown fox jumped over the lazy dog."
let expected = [ "The"; "quick"; "brown"; "fox"; "jumped"; "over"; "the"; "lazy"; "dog" ]
let result = parse input
match result with
| Some ws ->

Assert.AreEqual(expected, ws)
| None ->

Assert.IsTrue false

The logic is as follows. We supply an input called input, which is
a sentence. We also supply an expected value, which is the output we
expect parse to producewhen given the input. Next, we call parsewith
input and store it in result. Since parse returns an option type (Some
if the parser succeeds, None if it does not), we pattern-match on result.
Finally,

1. if we get back Someword list ws, we check that ws is exactly the same
as theword list expected. Note the position of the expected parame-
ter. While Assert.AreEqual will fail anytime its two arguments dif-
fer, when it fails, it returns a helpful message based on the contents
of the expected parameter. Otherwise,

2. if we get back None, then the parse failed when it should have suc-
ceeded. In this case, we force the test to fail by supplying Assert.IsTrue
false.

Running dotnet test reports:
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$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 1, Skipped: 0, Total: 1, Duration: 86 ms

So far so good.

Test-driven development

One of the many buzzwords you may hear out in industry is something
called “test-driven development” or TDD. The idea behind TDD is to
write tests before you write your implementation code. While there are
many fads in software development, I believe that this is genuinely a
good idea. For starters, providing an example of input and output of-
ten focuses your implementation efforts. Second, input and output ex-
amples fit nicely with functional programming, since, if you’re doing it
correctly, every function should be pure and every input should unam-
biguously produce the same output every time. 81 81 For deterministic functions.

Let’s add a test for a feature we do not yet have: the ability to parse
questions.

[<TestMethod>]
member this.ValidQuestionReturnsAWordList() =

let input = "Does the quick brown fox jump over the lazy dog?"
let expected = [ "Does"; "the"; "quick"; "brown"; "fox"; "jump"; "over"; "the"; "lazy"; "dog" ]
let result = parse input
match result with
| Some warr ->

Assert.AreEqual(expected, warr)
| None ->

Assert.IsTrue false

Running dotnet test produces our first failing test, because we do
not yet support this feature.

$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
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A total of 1 test files matched the specified pattern.
Failed ValidQuestionReturnsAWordList [35 ms]
Error Message:
Assert.IsTrue failed.
Stack Trace:

at SentenceParserTests.TestClass.ValidQuestionReturnsAWordList() in [...] Tests.fs:line 30

Standard Error Messages:
[attempting: grammar on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: sentence on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: sprefix on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: upperword on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[success: upperword, consumed: "Does", remaining: " the quick brown fox jump over the lazy dog?", next char: 0x20]
[attempting: words0 on " the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: word on "the quick brown fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "the", remaining: " quick brown fox jump over the lazy dog?", next char: 0x20]
[attempting: word on "quick brown fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "quick", remaining: " brown fox jump over the lazy dog?", next char: 0x20]
[attempting: word on "brown fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "brown", remaining: " fox jump over the lazy dog?", next char: 0x20]
[attempting: word on "fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "fox", remaining: " jump over the lazy dog?", next char: 0x20]
[attempting: word on "jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "jump", remaining: " over the lazy dog?", next char: 0x20]
[attempting: word on "over the lazy dog?", next char: 0x44]
[success: word, consumed: "over", remaining: " the lazy dog?", next char: 0x20]
[attempting: word on "the lazy dog?", next char: 0x44]
[success: word, consumed: "the", remaining: " lazy dog?", next char: 0x20]
[attempting: word on "lazy dog?", next char: 0x44]
[success: word, consumed: "lazy", remaining: " dog?", next char: 0x20]
[attempting: word on "dog?", next char: 0x44]
[success: word, consumed: "dog", remaining: "?", next char: 0x3f]
[success: words0, consumed: " the quick brown fox jump over the lazy dog", remaining: "?", next char: 0x3f]
[success: sprefix, consumed: "Does the quick brown fox jump over the lazy dog", remaining: "?", next char: 0x3f]
[attempting: period on "?", next char: 0x44]
[failure at pos 48 in rule [pchar '.']: period, remaining input: "", next char: EOF]
[failure at pos 48 in rule [pchar '.']: sentence, remaining input: "", next char: EOF]
[failure at pos 48 in rule [pchar '.']: grammar, remaining input: "", next char: EOF]

Failed! - Failed: 1, Passed: 1, Skipped: 0, Total: 2, Duration: 116 ms

This output says that the ValidQuestionReturnsAWordList test failed.
It failed, of course, because we have not yet implemented this feature.
Observe that, since we used the debug feature, the failing test printed
out what the program echoed. Tests only print output when they fail.

Let’s implement the feature.

A Question Parser

I am not going to belabor parsers again here, so let’s fast-forward to the
most intuitive feature addition. First, add a qmark parser.

let qmark = (pchar '?') <!> "question mark"
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Next, modify the sentence parser so that it accepts either a period or
a question mark.

let sentence = pleft prefix (period <|> qmark) <!> "sentence"

The complete, modified code is as follows:

module SentenceParser

open Combinator

let qmark = (pchar '?') <!> "question mark"
let period = (pchar '.') <!> "period"
let word = pfun (pmany1 pletter) (fun cs -> stringify cs) <!> "word"
let upperword = pseq pupper (pmany0 pletter) (fun (x,xs) -> stringify (x::xs)) <!> "upperword"
let words0 = pmany0 (pright pws1 word) <!> "words0"
let prefix = pseq upperword words0 (fun (w,ws) -> w::ws) <!> "sprefix"
let sentence = pleft prefix (period <|> qmark) <!> "sentence"
let grammar = pleft sentence peof <!> "grammar"

let parse input : string list option =
match grammar (prepare input) with
| Success(ws,_) -> Some ws
| Failure(_,_) -> None

Let’s test it again.

$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 2, Skipped: 0, Total: 2, Duration: 79 ms

Looks good!

Conclusion

In this tutorial, we learned:
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• How to create a solution.
• How to add a project to a solution.
• How to add a test project to a solution.
• How to add a test.
• How to run tests.
• How to do test-driven development, where tests are written before

implementation code.

I encourage you to add tests to your own projects. This means that
you will probably need to ”wrap” your existing projects in a solution,
but the above tutorial should be enough of a guide to get you started.

There aremany additional Assertmethods beside the AreEqualmethod.
For additional information, see the documentation on theMsTest Assert
class82. After clicking on the link, look for the ”Methods” dropdown in 82 https://docs.microsoft.com/

en-us/dotnet/api/microsoft.
visualstudio.testtools.
unittesting.assert?view=
mstest-net-1.2.0

the left column.
Finally, if youwant another tutorial, have a look atMicrosoft’s official

F# unit test tutorial83 which goes into more detail than this tutorial.
83 https://docs.microsoft.com/
en-us/dotnet/core/testing/
unit-testing-fsharp-with-mstest

https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest




Implementing Variables

At this point in your computer science education, you’ve probably writ-
ten many programs that used variables. Without them, we would not
be able to abstract over data. Different inputs would require different
programs, even when those inputs were essentially the same. In fact,
it’s pretty hard to imagine a program does not use any variables at all.

But what is a variable, exactly? Furthermore, how are variables sup-
posed to behave in a programming language? Variables are of foun-
dational importance to most programming languages. Understanding
how they are implemented will give you a deeper appreciation for the
meaning of programs. Moreover, their implementations will help you
understandwhywe rely so heavily on languagemodels like the lambda
calculus when designing languages.

Pluslang+

In this section, wewill revisit our PLUSLANG interpreter from the chap-
ter on Evaluation. PLUSLANG+ adds a little syntax to support variables
and augments the PLUSLANG interpreterwith variable support. A com-
plete PLUSLANG implementation is available at the end of that chapter,
so if you want to follow allow, feel free to copy it.

In PLUSLANG, we had two kinds of expressions. We had numeric
expressions like 3. We also had plus-expressions like + <expr> <expr>.
Let’s add two more kinds of expressions to support variables.

First, we need to allow users to assign a value to a variable. A let-
expression has the form let <var> <expr>. It defines a new variable
if it does not already exist and assigns the value of <expr> to it. Let’s
restrict <var> to be any single letter for simplicity. Second, we need to
be able to support using a variable. Whenever a <var> appears outside
of a let-expression, we will call that a var-expression.

At the risk of overcomplicating our example, I think you will find it
convenient to have one more kind of expression. This last form is con-
ventionally called sequential composition. You have most definitely used
sequential composition countless times in a programming language and
have never thought about it. It means “do this first and then do that”
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and it is fundamental to the operation of a computer program. Because
humans also to think in these terms, though, you probably have never
given it a second thought. In many languages, it is represented by a
; character. Here’s an example from a programming language you al-
ready know.

int x = 2;
x += 2;

If we erase the bits of the program that don’t have to do with sequen-
tial composition, you get

expr_1;
expr_2;
expr_3

which literally says “do expr_1 and then do expr_2 and then do expr_3.”
The last expression, expr_3, happens to be empty, which we might in-
terpret as doing nothing. We’ll talk more about how sequential compo-
sition is evaluated in this and coming chapters.

Our BNF grammar for PLUSLANG+ is the following.

<expr> ::= + <expr> <expr>
| let <var> <expr>
| tt <expr> <expr>
| <var>
| <num>

<num> ::= <digit>+

<digit> ::= 0|1|2|3|4|5|6|7|8|9
<var> ::= α ∈ a . . . z

For example, we might have the following program.84 84 Remember that my aim with this
language is to help you understand
difficult concepts, so PLUSLANG+
programs are admittedly not very
intuitive. Intuitive or pretty languages
tend to complicated. I suspect that you
prefer simplicity while you learn, so
what PLUSLANG+ lacks in pizzazz it
makes up for in simplicity.

tt let x 1 + x x

which evaluates to 2.
As in the chapter on Evaluation, this chapter uses prefix form. Re-

member that the role of the AST is to abstract syntax from semantics.
In one sense, the appearance of the expression tt let x 1 + x x does
not matter; all the computer needs to know is how to convert that string
into an AST. In another sense, it does matter. Humans tend to prefer
intuitive syntax. I’m favoring a syntax that is easy to parse in order to
keep these readings short, but if it helps, try converting the syntax into
something more familiar, like x = 1; x + x.85 85 If you’re looking for a challenge,

extend my parser to support the more
complex syntax. If you do it correctly,
you won’t even need to change our type
definition or eval.

It might be hard for you to see why the above expression evaluates to
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2 just yet, so let’s work through this language one piece at a time.

PLUSLANG+ AST

To support let-, var-, and sequential composition expressions, our AST
will need to be extended.

type Expr =
| Num of int
| Var of char
| Plus of left: Expr * right: Expr
| Let of var: Expr * e: Expr
| ThisThat of this: Expr * that: Expr

We added Var for variable use, Let for let-expressions (i.e., variable
assignment), and ThisThat for sequential composition.

Observe that I define Let as Expr * Expr instead of Var * Expr. The
reason is that Var is not a type. Rather, it is one alternative value of
Expr. Therefore, we cannot use Var where F# expects a type. This is
a limitation of the F# type system, but it is only mildly inconvenient.
Alternatively, we could have defined Let as char * Expr. I chose this
version because it turns out to be the simpler of the two approaches, but
the choice is somewhat arbitrary.

PLUSLANG+ Parser

We are going adapt our existing PLUSLANG parser, so with the excep-
tion of the expr parser, all of our existing parsing rules will remain
untouched. Let’s start by adding support for parsing variable names,
which are single letters. As with numbers, we are happy to let the user
supply whitespace wherever they want.

let var = pad pletter |>> Var

Parsing let-expressions and sequential composition seems like a lot
of work until you realize that it follows the same pattern as a plus-
expression. The general pattern is op expr1 expr2. Our parsing rule
for plus-expressions came in two parts:

let plusws0 = pad (pchar '+')
let plusExpr = pseq (pright plusws0 expr) expr Plus

Thefirst part, plusws0, parses a + sign surroundedby optionalwhites-
pace. The second part looks for the first part followed by two exprs, and
when successful, gives those two expressions to the Plus constructor.
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Let-expressions and sequential composition work the same way.

let letws0 = pad (pstr "let")
let letExpr = pseq (pright letws0 var) expr Let

let ttws0 = pad (pstr "tt")
let ttExpr = pseq (pright ttws0 expr) expr ThisThat

Finally, we update exprImpl to support the new expressions.

exprImpl := plusExpr <|> letExpr <|> ttExpr <|> numws0 <|> var

PLUSLANG+ Evaluator

If you were following along in the chapter on Evaluation, you’ll remem-
ber that I said that the cases of our Expr strongly suggest the structure
of the eval function. That is also true here. We added three more cases
to Expr, so that means that the match expression in eval will also need
three additional cases. We will need to fill in the missing bits of this
template:

let rec eval ast: int =
match ast with
| Num n -> Num n
| Plus (left, right) ->

let r1 = eval left
let r2 = eval right
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2)
| _ -> failwith "Can only add numbers."

| Var c -> . . .

| Let (var, e) -> . . .

| ThisThat (this, that) -> . . .

But there’s also something more important missing here. Mechani-
cally speaking, what does a variable do? On a computer, it temporarily
stores a value. Whenever we talk about storage on a computer, we’re re-
ally talking about putting a value in a predetermined memory location.
Since you’ve all taken a data structures course, you know that we can
put rather sophisticated things in memory if we need to. All of the ab-
stract data types (ADTs) you learned about are available to you when
you implement a language. For variables, what we need is some kind
of mapping from variable names to variable values. Can you think of an
appropriate ADT for this task? We will need some storage soon so we
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will return to this question shortly.
Here’s the shortest possible program in PLUSLANG+ that has both a

let-expression and a var-expression:

tt let x 1 x

The above expression has the AST shown in Figure 21. The pro-
gram first assigns 1 to the variable x, and then it accesses the value of x.
We will evaluate this expression’s AST just as we did in the chapter on
Evaluation, starting at the top, which is the ThisThat node.

ThisThat

Let

1x

Var

xVar Num

Figure 21: The AST for the subexpres-
sion tt let x 1 x.

Before we continue, there’s just a quick note to make about the or-
der of evaluation of a node’s children. Colloquiually, in a pre-order
traversal, we evaluate children from left to right. Nevertheless, “left”
and “right” are fictions in a computer—it has no notion of direction. So
when we evaluate an AST node, we really need to think about the order
to evaluate its children in the context of the operation we are imple-
menting. Keep that in mind, as you will see that let-expressions cannot
be evaluated from left-to-right.86 86 Unless I rearrange the drawing in a

way that I find to be confusing.

PLUSLANG+ Evaluator: Sequential Composition

As we defined it, ThisThat has two children, this and that. Naturally,
we should do this before we do that. Let’s update our code.

| ThisThat (this, that) ->
let r1 = eval this
let r2 = eval that
r2

Hopefully the first two lines strike you as intuitive. If we want to do
this, then we need to evaluate it. Since wewant to evaluate this before
that, then we write them in the order shown. But you may be puzzled
by the last line, r2.

The last line returns the result of evaluating that. In most languages,
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sequential composition returns nothing. However, I ama fan of expression-
oriented languages. In those languages, everything is an expression,
and expressions return something. For example, F#, Scala, Ruby, and
Rust are all expression-oriented. This is also a good opportunity to point
out that some design choices are a matter of opinion, and this is one of
them. Therefore, we define our expression in PLUSLANG+ to simply
return the last thing evaluated, namely that.

PLUSLANG+ Evaluator: Let

If we first evaluate this, which is shown as the left subtree in Figure 21,
the recusive call to our eval function next considers a let-expression.
Again, we must be mindful about the fiction of “left” and “right” in a
computer. let stores the result of <expr> in <var>. The drawing shows
<var> on the left and <expr> on the right. We have to know the value of
<expr> before we do anything with <var> so we will evaluate the right
child first.

| Let (var, e) ->
let r = eval e
. . .

What comes next though? We have two things to do. First, we must
find out what name var refers to. Next, we must store a mapping from
that name to the value of <expr>. Here’s where we return to the ques-
tion of an appropriate data structure. Put another way, what’s a con-
venient data structure for associating a value (like an evaluated expres-
sion) with a key (like a variable name)? If you thought “a dictionary,”
great!87 That’s what we’re going to use. 87 Likewise, if you thought “a map”

or “an associative array,” rest assured
that those names all refer to the same
ADT. If you thought “a hash table,”
also good, but remember that a hash
table is merely an implementation of
the dictionary ADT. You could also
implement a dictionary using a binary
search tree or even an ordered vector.

To find out the name of var, we cannot just evaluate it. Remember,
we decided that evaluating a variable returns the value stored in that
variable. We need to do something simpler; we just need to know the
variable’s name. Let’s write a helper function. We need the helper func-
tion because I defined the var field of our Let AST node as an Expr.

let charFromVar e =
match e with
| Var c -> c
| _ -> failwith "Expression is not a variable."

Since we always expect var to be a Var (see the var parser above—it
can’t be anything else), we just need the _ case to prove to the F# type
checker that we’ve considered that possibility. Now we can finish our
our implementation of eval for Let nodes.
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| Let (var, e) ->
let r = eval e
let c = charFromVar var
d[c] <- r
r

The expression d[c] <- r says “mutably store r in the dictionary d
for key c.”88 So now we just need to define d, our dictionary, some- 88 The Dictionary implementation I am

using comes from C# and is mutable.where. I am going to define d at the top level of my program, before
anything else.

let d = new System.Collections.Generic.Dictionary<char,Expr>()

Finally, because I am opinionated and like expression-oriented lan-
guages, Let returns a value.89 89 let x let y 1 is a valid program.

It looks strange, but is there anything
really wrong with returning a value in
an assignment? I argue no, and in fact,
many statement-oriented languages
(like C) make this choice as well.

PLUSLANG+ Evaluator: Var

After the left subtree containing Let is evaluated, our ThisThat oper-
ation will evaluate the right subtree. The right subtree contains a Var
node, so let’s define evaluation for Var. As stated before, evaluating
Var should return the value of the variable, if the variable exists. Var is
more or less the converse of Let.

| Var c ->
if (d.ContainsKey c) then
d[c]

else
failwith ("Unknown variable '" + c.ToString() + "'")

The complete implementation of PLUSLANG+ with an updated main
method is shown in Listing 2. We can run PLUSLANG+ just like we ran
PLUSLANG, and the language is a superset of PLUSLANG. Let’s try the
expression I used to motivate this chapter.

$ dotnet run "tt let x 1 + x x"
Expression: Plus (Plus (Num 1, Plus (Num 2, Num 3)), Plus (Num 4, Num 5))
Result: 15

“These are not the variables you are looking for.”

While this mini-language implements working variables that may be
sufficient for many purposes, if you use them, you will quickly discover
that they behave much differently than variables in your favorite pro-
gramming language. In PLUSLANG+, all of our variables have global
scope. The term scope refers to the region of a program wherein a defini-
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tion is valid. The term global refers to the entire program. So globally-
scoped variables are defined throughout the entire program.

To see why this is not a great idea, let’s look at a toy program in Java.

class NotGloballyScoped {
public static void countDown() {
for (int i = 5; i >= 0; i--) {
System.out.println(i);

}
}

public static void main(String[] args) {
int i = 7;
countDown();
System.out.print(i);

}
}

Running this program prints out 5 4 3 2 1 0 7 as you might ex-
pect. But we can change the scope of the variable i to be global, like so.

class GloballyScoped {
public static int i;

public static void countDown() {
for (i = 5; i >= 0; i--) {
System.out.print(i + " ");

}
}

public static void main(String[] args) {
i = 7;
countDown();
System.out.println(i);

}
}

By making the variable i static in Java, we declare that we want it
to be stored in global program storage for the lifetime of the program.
Now when we run the program, it prints 5 4 3 2 1 0 -1. If this is not
what you wanted to happen, you might find it upsetting. In short, the
function countDown uses the same variable i as the one used by main.
As a result, i is modified during the call to countDown. Since we usually
write methods or functions in isolation, using the same variable name
twice is easy to do.90 For a small program like this, a little discipline 90 Accidentally declaring variables with

global scope is a common mistake
and source of frustration for students
in CSCI 136. Perhaps you made this
mistake yourself once or twice yourself.
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about the use of variable names will avoid this problem. But as pro-
grams grow larger, it is harder not to reuse a variable name, especially
for variables commonly used to represent things like loop indices. If that
variable name happens to be globally scoped, surprising and upsetting
things can happen.

To address this issue, we will add scope to our variables. We will
discuss this modification in the next chapter, Implementing Functions.

Listing 2: A complete implementation for PLUSLANG+.
open Combinator

type Expr =
| Num of int
| Var of char
| Plus of left: Expr * right: Expr
| Let of name: Expr * e: Expr
| ThisThat of this: Expr * that: Expr

let d = new System.Collections.Generic.Dictionary<char,Expr>()
// mutable dictionary

let expr,exprImpl = recparser()
let pad p = pbetween pws0 p pws0

let num = pmany1 pdigit |>> (fun ds -> stringify ds |> int |>
Num)

let numws0 = pad num
let plusws0 = pad (pchar '+')
let plusExpr = pseq (pright plusws0 expr) expr Plus
let var = pad pletter |>> Var
let letws0 = pad (pstr "let")
let letExpr = pseq (pright letws0 var) expr Let
let ttws0 = pad (pstr "thisthat")
let ttExpr = pseq (pright ttws0 expr) expr ThisThat

exprImpl := plusExpr <|> letExpr <|> ttExpr <|> numws0 <|> var
let grammar = pleft expr peof
let parse input : Expr option =

match grammar (prepare input) with
| Success(ast,_) -> Some ast
| Failure(_,_) -> None

let charFromVar e =
match e with
| Var c -> c
| _ -> failwith "Expression is not a variable."

let rec eval ast : Expr =
match ast with
| Num n -> Num n
| Plus (left, right) ->

let r1 = eval left
let r2 = eval right
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2)
| _ -> failwith "Can only add numbers."

| Var c ->
if (d.ContainsKey c) then

d[c]
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else
failwith ("Unknown variable '" + c.ToString() + "'")

| Let (var, e) ->
let r = eval e
let c = charFromVar var
d[c] <- r
r

| ThisThat (this, that) ->
let _ = eval this
let r = eval that
r

[<EntryPoint >]
let main argv =

if argv.Length <> 1 then
printfn "Usage: dotnet run \"<expression >\""
exit 1

match parse argv.[0] with
| Some ast ->

printfn "Expression: %A" ast
let result = eval ast
printfn "Result: %A" result

| None -> printfn "Invalid expression."
0



Implementing Scope

In the last chapter on Implementing Variables, we learned how to imple-
ment global variables. The key insight when implementing variables is
that a programming language evaluator must maintain a mapping be-
tween variable names and their values. We saw that one way youmight
implement variables is with a simple, global mapping. Unfortunately,
this global mechanism proves insufficient when we want to use vari-
ables with functions.

In this chapter, we focus on a concept called scope. Although we con-
sider scope here in a form that youwill rarely encounter in “real life,” as
a standalone feature, doing so will help you understand what it is and
why it is important. When we implement functions in the next chapter,
you will see that they are little more than a thoughtful composition of
variables and scope.

What is Scope?

As stated in the previous chapter, scope refers to the region of a program
wherein a definition is valid. But scope is more than that. Scope is a
procedure—an algorithm—for determining the value of a variable at a
given point in a program’s execution. Let’s start simply, by considering
the global scope model we used in the last chapter.

In a languagewith global scope, each variable in the program is unique.
For example, if you refer to a variable x at the beginning of your pro-
gram, and you refer to a variable x later in your program, that’s the
same x variable in both places. Let’s consider an example from a C-like
language.91 91 In C, printf is very much like F#’s

printfn.
int x = 3;
int y = 21;
x = 4;
int z = 7;
printf("%dn", x);

It is probably not surprising to you that the above program prints 4.
Because each variable name maps uniquely to a value, global scope can
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be implemented with a simple dictionary-like mechanism as we did in
the last chapter. Here’s the state of that mapping at the last line of the
program.

variable value
x 4
y 21
z 7

In many languages, including C, we can ask the language to give us
a new scope using { and } syntax. In C, regions of code enclosed inside
curly braces are called blocks.

int x = 3;
int y = 21;
{
int x = 4;
int z = 7;

}
printf("%dn", x);

Youmay be surprised to learn that the above program prints 3. Why?
The answer is because the printf statement refers to the first x, not the
second x. The two x variables in this program are different variables.

Clearly, the simple dictionary-like mechanism we used above does
not capture whatever this simple C program is doing with its variables.
In fact, when the program executes inside the block, variable values are
found in a different dictionary. cur points at the dictionary that is current
when the program is executing inside the block.

cur variable value
x 4
z 7

parent

variable value
x 3
y 21

parent ∅

This model is more sophisticated than the global scope model. Ob-
serve that it contains two different instances of the variable x. The cur-
rent dictionary is linked to a second dictionary. The definition of x in
the current dictionary hides92 the other definition of x in the linked dic- 92 The word that language designers use

is shadows.tionary. The way lookup works in this model is as follows. Suppose we
are looking for a variable with name α.

1. Look for α in the current dictionary.

(a) If found, return the value of α.
(b) If not found and there is a parent dictionary, follow the parent

pointer and search the parent dictionary for α.
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2. Otherwise, fail with an error.

If your recursion chops are good, you might recognize lookup as a
recursive procedure. In fact, chains of linked dictionaries can be arbi-
trarily long. If you’re thinking “this looks like a linked list of dictionar-
ies,” you’re right! This structure is sometimes called a scope chain. To
clarify, let’s define a scope chain using a simple F# type.

type Scope =
| Base
| Env of m: Map<char,Expr> * parent: Scope

In keeping with our simple model for variables from our last chap-
ter, our dictionary is restricted to one-letter variable names (chars).
However, observe that I am now using Map instead of Dictionary. The
main difference is that Map is an immutable data structure, whereas
Dictionary is mutable. I am making this change now because I would
like us to move toward a more mathematical understanding of scope.
Futhermore, wedonot need amutable dictionary, andkeeping it around
will leave us prone to state-handling errors.

Nevertheless, hopefully you can see that the abovedefinition for Scope
is the same structure as shown in the linked tables above. There are two
cases. When there is a current mapping, what we call an environment
(Env above), we will do our lookup there. If there is not a current map-
ping (Base), lookup fails, because lookup has reached the end of the
scope chain.

PLUSLANG++

Let’s extend PLUSLANG+ with scopes. Like the C example above, we
will allow the user to be able to create and destroy new scopes. Our
implementation will use the Scope type we defined above, but to keep
things simple, we will restrict the language so that the current scope
always points at the head of the Scope linked list. In this way, our scope
chain will function as a stack.

PLUSLANG++ AST

Since scope will function like a stack, that means we need to add sup-
port for two operations. The first, pushwill create a new scope and push
it to the head of the scope chain. The second, popwill discard the scope
at the top of the scope chain. Our first order of business is to modify
our Expr type to support these two new operations in our ADT.
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type Expr =
| Num of int
| Var of char
| Plus of left: Expr * right: Expr
| Let of name: Expr * e: Expr
| ThisThat of this: Expr * that: Expr
| ScopePush of e: Expr
| ScopePop of e: Expr

For consistency, and becausewe alwayswant to do something after we
modify our scope chain, both push and pop operations take an Expr. The
push <expr> operation adds a scope to the head of the scope chain and
then evaluates <expr>. The pop <expr> operation first evaluates <expr>
and then removes the scope from the head of the scope chain.93 93 We need pop to work in the reverse

order as push for the next chapter.

PLUSLANG++ Parser

Next, we must extend the language’s parser to support these two op-
erations. As with our other operations, we will recognize the operands
(push and pop) with a parsing rule that allows whitespace, and then we
will define a new parser that recognizes the entire expression.

let spushws0 = pad (pstr "push")
let spopws0 = pad (pstr "pop")
let scopeExpr =
(pright spushws0 expr |>> ScopePush) <|>
(pright spopws0 expr |>> ScopePop)

Now we add our scopeExpr parser to our expr parser.

exprImpl :=
plusExpr <|>
letExpr <|>
ttExpr <|>
scopeExpr <|>
numws0 <|>
var

PLUSLANG++ evaluator

Let’s now consider the changes to our evaluator. Clearly, we need to
add support for push and pop. However, there is one other alteration
we must make, because we changed the data structure we use to store
variables. The reason we’re doing this is so that we have precise control
over which portion of a scope chain is visible at any given time.
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To make this change, we need to add an argument to eval and we
also need to change its return type. First, instead of declaring a global
dictionary d for variables, we will modify eval to take a second argu-
ment s, the scope chain. The appropriate Scope can then be passed in
whenever eval is called. Second, eval should return not just the re-
sult of evaluation, but a 2-tuple (Expr * Scope) that includes both the
result and the current scope chain. Returning the scope chain makes
it possible for a language operation to recursively alter the Scope data
structure and then to be able to see the result of that change when re-
cursive evaluation returns. If this last part is not clear to you, you’ll see
what I mean as we work through our implementation.

To summarize, eval’s declaration should change from

let rec eval (ast: Expr): Expr =
. . .

to

let rec eval (ast: Expr)(s: Scope): Expr * Scope =
. . .

Because our new eval function takes a Scope, we now need to create
one when we call eval for the first time. We call eval for the first time
in our main function.

// initialize root scope
let env = Env(Map.empty, Base)

Sadly, this change does mean that we need to modify all of the im-
plementations for our existing AST nodes. Fortunately, our language is
still small, so we will walk through modifying the logic for each AST
node in turn. For each AST node, we must ask the following questions.

• Does any part of this operation modify a scope?

• What scope should be returned with the result?

Let’s start at the top with Num, which we had previously defined like
so.

| Num n -> Num n

Does any part of this operation modify a scope? No. It just returns a
number. What scope should be returned with the result? Since we’re not
changing anything, we should probably just return the same scope we
started with. The following modification works fine.
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| Num n -> Num n, s

Next we consider Plus. Does any part of this operation modify a scope?
You might think no, it’s just addition, but remember, addition takes two
Expr operands. Those Exprs must eventually evaluate to Nums, but they
can be anythingunevaluated, including a variable assignment or a scope
operation. For example, the expression + let x 1 2willmodify a Scope
by creating amapping for x to 1. So the answer here is yes, additionmod-
ifies a scope. Let’s consider just the first two lines of our old definition.

| Plus (left, right) ->
let r1 = eval left
. . .

evalnow requires an additional argument, and it returns a secondvalue.
Let’s supply our scope s to eval and capture the second returned value,
the updated scope.

| Plus (left, right) ->
let r1, s1 = eval left s
. . .

When we evaluate right, we need to do the same thing.
| Plus (left, right) ->

let r1, s1 = eval left s
let r2, s2 = eval right s1
. . .

Observe that we use the updated scope s1 when evaluating right. Fi-
nally, we can pattern-match to ensure that r1 and r2 are Nums and then
do the addition. We return both the new number and the latest scope.

| Plus (left, right) ->
let r1, s1 = eval left s
let r2, s2 = eval right s1
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2), s2
| _ -> failwith "Can only add numbers."

All of our expressions are going to need to deal with scopes like this.
In the interest of not boring you, I provide a complete implementation at
the end of this chapter (see Listing 3). For the remainder of this chapter,
let’s focus on how we maintain variables in our new Scope data struc-
ture, and then we will wrap up with support for push and pop.
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Reading and Writing to Variables

Here is our updated code for let expressions and variable lookup ex-
pressions.

| Var c ->
lookup c s, s

| Let (var, e) ->
let r, s1 = eval e s
let c = charFromVar var
let s2 = store c r s1
r, s2

Themain differences fromour old definition, aside from carefulman-
agement of Scope, is that we now have lookup and store helper func-
tions. How do they work?

let rec lookup c s: Expr =
match s with
| Base ->

failwith ("Unknown variable '" + c.ToString() + "'")
| Env (m, parent) ->

if (Map.containsKey c m) then
Map.find c m

else
lookup c parent

The lookup function above looks up a variable with name c in Scope
s. If the data structure is in the base case, then lookup fails. Lookup
can only fail when the variable does not exist in the map. For exam-
ple, the PLUSLANG++ program zwill print the error message Unknown
variable 'z'. Otherwise, lookup will search the Scope for the first
definition of the variable it finds. It will keep searching down the chain
until it reaches the base case.

store inserts a new mapping from name c to value v into Scope s.
Since Scope is immutable, it returns a new Scope data structure. If the
mapping for the variable already exists in the currentmap, we overwrite
it.94 94 Whether to overwrite it or to fail with

an error is a choice you can make as a
language designer.let store c v s: Scope =

match s with
| Base -> failwith "Cannot store to base scope."
| Env (m, parent) ->

let m' = Map.add c v m
Env (m', parent)
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push and pop

Finally, we come to the push and pop operations. For all the talk,95 these 95 I know this chapter is long, and I am
sorry.are actually simple to implement.

The push operation adds a new Env to the head of the scope chain
and then evaluates its Expr argument.

| ScopePush e ->
let s1 = Env (Map.empty, s)
eval e s1

The pop operation evaluates its Expr argument in the context of the
parent of the scope at the head of the scope chain. This has the same
effect as removing the head. To make this definition simple, we first
define a parentOf helper function. parentOf fails if it is called in the
Scope base case.

let parentOf env: Scope =
match env with
| Base ->

failwith "Cannot get parent of base scope."
| Env (_, parent) -> parent

Here’s the definition for pop.

| ScopePop e ->
let res,s1 = eval e s
let parent = parentOf s1
res,parent

Putting it All Together

A complete implementation for PLUSLANG++ can be found in List-
ing 3. To make it easier to enter in complicated multi-line programs,
this implementation has been modified to read a program from a file
instead of from command line arguments. Let’s try a small program
that manipulates scopes and see whether it handles them correctly. I
like to use the convention of indenting arguments to operations since it
makes themmore readable. We can do that because our pad helper com-
binator lets us use any kind of whitespace to separate language terms.
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tt
let x 1
push

tt
let x 2
+

x
pop

x

If we save the above program as scope-test.plus, then we should
be able to run it as follows.

$ dotnet run scope-test.plus
Expression: ThisThat
(Let (Var 'x', Num 1),
ScopePush

(ThisThat (Let (Var 'x', Num 2), Plus (Var 'x', ScopePop (Var 'x')))))
Result: Num 3

If you work this program out on paper, you’ll see that this is what we
expect. The program creates two variables with the same name x, but
with two different values. By managing scopes, it is able to add them
together, yielding the number 3.

In the next chapter, you’ll see why we did all this hard work.

Listing 3: A complete implementation for PLUSLANG++.
open Combinator

type Expr =
| Num of int
| Var of char
| Plus of left: Expr * right: Expr
| Let of name: Expr * e: Expr
| ThisThat of this: Expr * that: Expr
| ScopePush of e: Expr
| ScopePop of e: Expr

type Scope =
| Base
| Env of m: Map<char,Expr> * parent: Scope

// lookup variable named c in given scope
let rec lookup c s: Expr =

match s with
| Base ->

failwith ("Unknown variable '" + c.ToString() + "'")
| Env (m, parent) ->

if (Map.containsKey c m) then
Map.find c m

else
lookup c parent
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// store variable named c with value v in Scope
// s, overwriting an existing value if necessary;
// returns updated Scope
let store c v s: Scope =

match s with
| Base -> failwith "Cannot store to base scope."
| Env (m, parent) ->

let m' = Map.add c v m
Env (m', parent)

// get the parent scope of the current scope
let parentOf env: Scope =

match env with
| Base ->

failwith "Cannot get parent of base scope."
| Env (_, parent) -> parent

(* forward references for recursive parsers *)
let expr,exprImpl = recparser()
(* helpers *)
let pad p = pbetween pws0 p pws0 <!> "pad"

(* numbers *)
let num = pmany1 pdigit |>> (fun ds -> stringify ds |> int |>

Num) <!> "num"
let numws0 = pad num <!> "numws0"

(* addition *)
let plusws0 = pad (pchar '+') <!> "plusws0"
let plusExpr = pseq (pright plusws0 expr) expr Plus <!> "

plusexpr"

(* variables *)
let var = pad pletter |>> Var <!> "var"
let letws0 = pad (pstr "let") <!> "letws0"
let letExpr = pseq (pright letws0 var) expr Let <!> "letexpr"

(* sequential composition *)
let ttws0 = pad (pstr "tt") <!> "ttws0"
let ttExpr = pseq (pright ttws0 expr) expr ThisThat <!> "ttexpr"

(* scope operations *)
let spushws0 = pad (pstr "push")
let spopws0 = pad (pstr "pop")
let scopeExpr =

(pright spushws0 expr |>> ScopePush) <|>
(pright spopws0 expr |>> ScopePop)

(* top-level expressions *)
exprImpl :=

plusExpr <|>
letExpr <|>
ttExpr <|>
scopeExpr <|>
numws0 <|>
var

let grammar = pleft expr peof <!> "grammar"

(* parsing API; call this to parse *)
let parse input : Expr option =
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match grammar (prepare input) with
| Success(ast,_) -> Some ast
| Failure(_,_) -> None

let charFromVar e =
match e with
| Var c -> c
| _ -> failwith "Expression is not a variable."

let rec eval (ast: Expr)(s: Scope): Expr * Scope =
match ast with
| Num n -> Num n, s
| Plus (left, right) ->

let r1, s1 = eval left s
let r2, s2 = eval right s1
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2), s2
| _ -> failwith "Can only add numbers."

| Var c ->
lookup c s, s

| Let (var, e) ->
let r, s1 = eval e s
let c = charFromVar var
let s2 = store c r s1
r, s2

| ThisThat (this, that) ->
let _, s1 = eval this s
let r, s2 = eval that s1
r, s2

| ScopePush e ->
let s1 = Env (Map.empty, s)
eval e s1

| ScopePop e ->
let res,s1 = eval e s
let parent = parentOf s1
res,parent

[<EntryPoint >]
let main argv =

if argv.Length <> 1 then
printfn "Usage: dotnet run \"<file>\""
exit 1

// does the file exist?
if not (System.IO.File.Exists argv[0]) then

printfn "%s" ("File '" + argv[0] + "' does not exist.")
exit 1

// read file
let input = System.IO.File.ReadAllText argv[0]

// initialize root scope
let env = Env(Map.empty, Base)

match parse input with
| Some ast ->

printfn "Expression: %A" ast
let result, _ = eval ast env
printfn "Result: %A" result

| None -> printfn "Invalid expression."
0





Implementing Functions

Figure 22: From the Café Royal Cocktail
Book by W.J. Tartling, illustrated by
Frederick Carter, 1937.

THIS is a bit of a long chapter. But it’s the last lesson of the semester, and it
will leave you with a superpower: the knowlegde of how functions work
in a programming language. Do your best to understand it. As usual,
code is available at the end of the chapter for you to try out. [—ed.]

In the last chapter, Implementing Scope, we spent a lot of time develop-
ing a “fancy” model for scoping variables. After reading that chapter,
you may have felt like you spent a lot of time thinking hard about a fea-
ture that did not seem very intuitive or natural. I am here to tell you
that all that hard work was worth it, and that it was all building up to
be able to talk about the subject of this chapter, functions.

Functions are not just neat or convenient in a programming language.
I argue that functions are an essential element of programming because
they are a natural, intuitive, and commonplace way for humans to think
about the world. To demonstrate, I’ll start with my favorite cocktail
recipe.
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The Last Word
3/4 oz gin
3/4 oz green chartreuse
3/4 oz maraschino liquor
3/4 oz freshly-squeezed lime juice
one cocktail cherry (like Luxardo or Amarena)

Add gin, chartreuse, maraschino liquor, and lime juice to cocktail
shaker with ice and shake until chilled. Strain into a chilled coupe glass.
Garnish with cherry.

What is a Function?

The recipe above has parameters, in the form of an ingredient list. It has
a procedure that says what to do with those ingredients. It even has a
name so that we can refer to it without having to recite the whole thing
outwhen communicating about it. It is precise enough that anyonewith
even a small amount of experience with cocktails will know precisely
what to do with it, and in the right hands, it will produce the same out-
come predictably and repeatably. It even has convenient mathematical
properties; want two cocktails? Perform the recipe twice. In essence, it
has all the makings of a function.

Of course, it’s not quite as rigorouslymathematical as computer func-
tions. It does not say, for instance, what a “cocktail shaker” is, how
hard to shake one, how to measure out 3/4 of an ounce, or even what an
“ounce” is. Nevertheless, we tend to think of recipes like the above as
“natural,” and although many people profess to have no kitchen skills,
fewwould say that following a recipe is well beyond their abilities. Nev-
ertheless, recipes and functions are essentially the same idea. Whether
mathematically-minded or not, humans have a natural compulsion to
describe their world in terms of functions.96 96 If you have not seen Prof. Tom Garrity

make the same argument, give yourself
a minute to appreciate his enthusiasm.

So if you’ve reached this point dreading the idea that learning how to
implement functions on a computer is not for you, let me just say, I dis-
agree. You are already familiar with the key components. As always,
making computers do things can be exasperating. But whenever you
get stuck or feel like you’re spinning your wheels, rest assured, under-
standing how a function works on a computer is absolutely worth your
time. It won’t serve you well as a future software engineer, it will clarify
your thinking and serve your main job, which is simply being a human.

Parts of a Function

The coarsest distinction we might make about the lives of functions on
computers is the fact that their lives are divided into two parts: first

https://youtu.be/zHU1xH6Ogs4?t=40


IMPLEMENTING FUNCTIONS 189

they are defined and then they are evaluated. For example, here I define
a function in F# called foo.

let foo(): unit =
printfn "Why are programmers obsessed with 'foo'?"

Observe that in the program above, I define a function, but I do not
“use” it. Because the function is never called, it is never evaluated. We
can amend the program so that a function call occurs.

let foo(): unit =
printfn "Why are programmers obsessed with 'foo'?"

[<EntryPoint>]
let main args =
foo()
0

Now our function lives a full and productive life. It is both defined
and used. When implementing functions, try to retain this distinction
in your mind, because those two parts are implemented differently.

Another aspect of functions is that they have formal parameters and
take arguments. You have likely used these words before, and you may
have even said one when you meant the other. In programming lan-
guage theory, formal parameters and arguments have quite distinctmean-
ings and using them interchangeably can cause a lot of confusion.

A formal parameter is a bound variable declared at the time of a func-
tion’s definition. For example, the variable x in the program above is a
formal parameter. A formal parameter declares that a placeholder vari-
able is valid to use throughout a function’s definition.

When a function is called with a value, we call that value an argu-
ment.97 In the evaluation of a function, we replace uses of that variable 97 Sometimes arguments are referred to

as actual arguments or actual parameters
because even good programmers get
confused sometimes. Embarrassingly,
“actual parameter” even once made
an appearance in drafts of the C++
language definition, and had to be
removed. Break the cycle and try to stick
to the correct, non-confusing words.

with uses of the variable’s stored value instead. This mechanism allows
us to abstract over procedures, which are simple sequences of code steps.
Functions make the lives of programmers easier because code that does
almost-the-same-thing, except for specific values, can be defined in a
general way only once. Imagine how hard it would be to write an int
add(int x, int y) function in Java if you had to write a different def-
inition for every possible value of x and y!

When a function is called, it is almost as if we are rewriting the func-
tion’s procedure, replacing formal parameters with the passed-in argu-
ments, before evaluating the newprocedure. I say “almost as if” because
there are some caveats about how this should work. To figure out how
it should work, we return briefly to the lambda calculus.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1905.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1905.pdf
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How Should a Function Behave?

Youmay rememberway back in the chapter on Introduction to the Lambda
Calculus, Part 1 that I claimed that the lambda calculus serves as the the-
oretical model for real programming languages. What does that state-
ment mean? The idea is that whenever we are in doubt, we design our
programming languages to do the same thing that the theory does. We
do this because the model is usually simpler, clearer, and easier to rea-
son about than an actual programming language. Actual programming
languages are constructed things, and like all constructed things, engi-
neering tradeoffs need to be made to accommodate certain realities.98 98 For example, real computers have

finite memory and take measurable time
to do things.

The simplicity of a model allows us to predict what a well-behaved lan-
guage should do.

A good analogy is the set of “laws” that model motion in physics.
You may have used these formulas before. For example, suppose we
throw a ball and want to know how long that ball will take to return to
its initial height. A handy dandy formula can be derived to answer this
question:

t = 2
V0

g
sin θ

where V0 is a vector representing the initial velocity of the object, θ is
the angle that the ball is thrown, g is gravitational acceleration on the
surface of the Earth, and t is time in seconds. This formula literally pre-
dicts the future.99 You can determine where a ball will go without ever 99 I have always felt that this fact is

underappreciated.throwing an actual ball.
Still, does this formula model the entire complexity of real life? It

does not. For example, in the real world, we have frictional forces from
wind. This matters at baseball games on windy days. To a lesser extent,
gravitational force is also not a constant on Earth.100 Nevertheless, the 100 One of the first observations of sys-

tematic error due to local gravity was
when the surveyors Charles Mason and
Jeremiah Dixon were hired in 1763 to
survey the borders of Pennsylvania and
Maryland. That border, now known
as the Mason-Dixon line, exhibited
systematic error that was hypothesized
to be caused by the gravitational in-
fluence of the Allegheny Mountains.
Nevil Maskelyne, whose instruments
Mason and Dixon used, later confirmed
the existence of local gravity in 1774 in
what is now called the “Schiehallion
experiment.”

above formula is a good model because it applies in the vast majority of
circumstances that normal humans care about.

In programming languages, we use the lambda calculus to model
programming language behavior. Like physics, there are many refine-
ments to this theory to account for the real world of programming on a
computer, but the lambda calculus is, to a first approximation, the right
model for functions.101 So howmight wemodel function definition and

101 For example, languages with types
are much closer to a model called
the simply typed lambda calculus, and
languages whose types can be generic
are closer to a model called System
F. Models remain an active area of
research in programming languages.

function calls in the lambda calculus?
Function definition is easy to model, because it is built right in to the

lambda calculus. We define a function like so.

λx.[whatever]

That’s right, lambda abstractions are just function definitions. You
might remember that lambda abstractions are missing some things we
consider essential in a real programming language, like function names.
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We will return to this point shortly.

Function calls are also easy to model. Suppose we have a function, a,
and an argument b.

ab

We can determine the effect of applying b to the function a by beta
reduction. For example, supposing a is the lambda expression λx.xx,
then ab is evaluated as follows.

(λx.xx)b given
([b/x] xx) beta reduction step 1: outer replacement
(bb) beta reduction step 2: inner replacement
bb eliminate parens; done

However, youmight remember that there is a catch to this procedure.
If an inner lambda redefines an argument, we must be careful. Suppose
we have the following expression instead.

(λx.λx.xx)b given
([b/x] λx.xx) beta reduction step 1: outer replacement
(λx.xx) beta reduction step 2 blocked by inner lambda abstraction with same name x
λx.xx eliminate parens; done

We stop our evaluation before the inner lambda expression because
it redefines x.

Here’s another special case, concerning free variables. Consider the
following expression.

(λx.λy.xy)y

Do you see any free variables in that expression? Recall that a free
variable is any variable that is not bound in a lambda abstraction. Indeed,
there is one: the last y. It it outside of any abstraction over y and so it is
free. We need to take special steps not to do the followingwhenwe reduce
this expression.

(λx.λy.xy)y given
([y/x] λy.xy) beta reduction step 1: outer replacement
(λy.yy) beta reduction step 2: inner replacement
λy.yy eliminate parens and... wrong!

The reason this is incorrect is that the y in the abstraction λy.xy and
the rightmost y are totally different variables. The first is a bound vari-
able whose value is determined by the abstraction. The second is a free
variable. When we make the above mistake, it appears that we can con-
clude that the free y could be replaced were we to beta reduce the above
expression with another argument. In lambda calculus parlance, the
free y was mistakenly “captured” by the abstraction over y.
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We should have performed the following reduction instead.
(λx.λy.xy)y given
(λx.λz.xz)y alpha reduce inner y with z
([y/x] λz.xz) beta reduction step 1: outer replacement
(λz.yz) beta reduction step 2: inner replacement
λz.yz eliminate parens; done

This special handling of variable redefinition is what we call capture-
avoiding substitution, and it forms the theoretical basis for our notion of
scope. Despite appearances, this is not merely an academic problem.
It occurs in any programming language that allows variables to be re-
defined. Recall our problem with global scope in the chapter on Imple-
menting Variables. Here’s a simpler version of the same programwritten
in F#.

let countDown(): unit =
for i = 5 downto 0 do
printf "%d " i

[<EntryPoint>]
let main args =
let i = 7
countDown()
printfn "%d" i
0

Observe that the main function calls another function countDown and
that this “inner” function redefines i. These are different variables that
just happen to have the same name, so we must be careful to treat them
differently.

Naming Things

Let’s turn our attention now tonaming things. Throughout the semester,
I have postponed discussion of naming things. I made you learn the
lambda calculus, and I claimed that “names don’t really matter” when
reasoning about that nature of computation. This is true, but I admit,
it’s also frustrating. Don’t we use names all the time? Aren’t they con-
venient and natural too? Don’t we want them?

In fact, I agree with all of the above. The question is not whether we
should name things, but how. I postponed this discussion until we had
the right vocabulary, namely, some notion of scope. Although there
are many approaches to naming, the predominant scheme for naming
things in a programming language is called lexical scope.

In languages with lexical scope, the meaning of a variable is deter-
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mined by the closest preceding definition in the program text.102 For 102 You should be aware that a number
of popular languages failed to carefully
consider the rules for naming things
when they were designed. In these
languages, what a name means in
a given context can be confusing or
unclear. Some examples are Javascript
and R. If you’ve tried to use these
languages and felt confused, it wasn’t
you.

example, in the countDown function above, we know that the i used in
the printf statement is the one defined in the for expression, not the
one defined in the main function, because the i in the for expression is
the closet definition.

F# uses clever, pretty syntax so that you don’t have to explicitly think
about scope like in PLUSLANG++. It uses lexical scope. Nevertheless,
scope and variables are distinct ideas, and that’s easier to see if we look
at the language that inspired F#, Standard ML. Consider the following
F# program, which prints the variable i.

let i = 7
printfn "%d" i

For the expression printfn "%d" i to be logically valid, we know
that it must fall within the scope of the variable i, otherwise iwould be
undefined. In Standard ML, this code is written in a slightly different
way.103 103 Take my word that the print ex-

pression does the same thing as the F#
one.let

val i = 7
in
print ((Int.toString 5) ^ "\n");

end;

In StandardML, the let val <var> = <expr_1> in <expr_2> end
syntaxmeans that anything defined between the let and in can be used
in the expressions between the in and end. Variables are defined using
val. Inside of the in and the end, those definitions are valid; outside,
they are not. In short, let defines the scope of a val.

Whether you write the F# version or the Standard ML version, either
syntactic form is converted to exactly the same lambda calculus expres-
sion.104 So what is the magical lambda expression that captures this be- 104 You might be wondering how F#

knows where the end is when it is not
explicitly written. The short answer is
that it uses whitespace to delimit scope,
like Python.

havior? It’s surprisingly simple. For simplicity, suppose you have an ex-
pression of the form let val <var> = <expr_1> in <expr_2> end.105

105 Pleasant syntax like F#’s version of
let is often referred to as “syntactic
sugar,” because having it is sweet but
not logically necessary. Programming
languages sometimes handle pleasant
syntax by first applying a preprocessing
step that rewrites user programs into a
form that uses alternative, less pleasant,
but easier-to-parse syntax, a process
called desugaring.

This expression can then be converted into a lambda expression using
the following formula.106

106 The ≡ sign means “is equivalent to”
and it means that syntax written on the
left side has exactly the same meaning
as syntax written on the right side.

let val z = U in V end ≡ (λz.V )U

Strikingly, weuse lambda abstractions—i.e., functions—tomodel vari-
ables and their scopes. In an important sense, that is all a lambda ab-
straction does. The lambda calculus provides rules that ensure that vari-
able use is logical, consistent, and most importantly, not surprising.

If we let z be i, U be 7 and V be printfn "%d" i, then we can see
how the code should be evaluated.
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(λi.(printfn "%d" i)) 7 given
((printfn "%d" 7)) beta reduce 7 for i
(printfn "%d" 7) eliminate parens
. . . etc

I leave the last steps blank because we would do the same procedure
recursively for printfn, which is also defined by a lambda abstraction
somewhere.107 That abstractionwould be substituted in and evaluation 107 Actually, two lambda abstractions,

because the printfn call above takes
two arguments. Recall that we use
curried abstractions like λx.λy.. . . to
model multiple arguments.

would continue.

Implementation

Let’s extend PLUSLANG++ one more time to support function defini-
tion and function calls. Whenever we are in doubt, we will turn to the
lambda calculus as a guide.

Let’s add twomore syntactic rules, for function definitions and func-
tion calls. fun <parlist> <expr> defines the curried lambda abstrac-
tion, λ<var>1.λ<var>2.λ<var>....<expr>. For example, the expression
fun [x y] + x y is a function definition. call <expr> <arglist> de-
fines curried application, <expr> <expr>1 <expr>2 <expr>... where the
first <expr> must be a function definition. For example, the expression
call fun [x y] + x y [1 2] calls a function definition.

Although it may seem right now like adding lambda abstraction and
application are not the obvious way to add function definition and calls
to a language, as you will see, it really is the simplest way. For exam-
ple, since named functions are just ordinary variables that happen to
map to function definitions, our new language can reuse the existing
variable implementation without modification. That allows us to write
programs like the following, which might even be starting to seem like
a pleasant way of writing code.

tt
let f
fun [x y] + x y

call f [1 2]

Here’s our updated grammar.
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<expr> ::= + <expr> <expr>
| let <var> <expr>
| tt <expr> <expr>
| fun <parlist> <expr>
| call <arglist> <expr>
| <var>
| <num>

<num> ::= <digit>+

<digit> ::= 0|1|2|3|4|5|6|7|8|9
<var> ::= α ∈ a . . . z
<parlist> ::= [ <var>∗ ]
<arglist> ::= [ <expr>∗ ]

Function Definition in PLUSLANGλ

To support function definition, we will need a new Expr case. A func-
tion definition is essentially a parameter list and a body expression.

| FunDef of pars: Expr list * body: Expr

To parse function definitions, we will use a small variation on the
pattern we’ve used throughout PLUSLANG to support prefix operators.
The main difference is that we want to be able to handle parameter lists
like [x y z]. Essentially, we need to be able to parse any number of
variables, separated by spaces, in between square brackets. Let’s break
this into pieces.

We can use pmany0 to parse any number of something. But we need
more than that; we want it to be the case that whenever there is more
than one of something, those somethings are separated by a separator.
Let’s define a new combinator to help us.

let pmany0sep p sep = pmany0 (pleft p sep <|> p)

This parser will look for p followed by sep; if it doesn’t find that, it
looks for just p. It tries to repeat this asmany times as possible. Suppose
we have the string x␣y␣z, where ␣ is a space character. Then pmany0sep
var pws1 will parse by first consuming x␣, then y␣, and then z.

Now, allwe need to do is to parse that space-separated list of variables
only when it is between square brackets. I add a little padding as well
in case the user wants to write something like [ a b c ].
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let parlist =
pbetween
(pchar '[')
(pad (pmany0sep var (pchar ' ')))
(pchar ']')

Now, we can apply our prefix operator pattern for the rest of a func-
tion definition,

let funws0 = pad (pstr "fun")
let funDefExpr = pseq (pright funws0 parlist) expr FunDef

and then we add funDefExpr to expr.
You might be surprised how easy it is to implement evaluation for

a function definition. Suppose I have the following program. What
should the program do when I run it?

fun [x y] + x y

The answer is: nothing. As in an ordinary language, like Java, if we
define a function but never use it, nothing should happen. It’s pretty
easy to make nothing happen; let’s add a case to eval that simply re-
turns the definition itself.108 108 You can use _ in a pattern match to

ignore matches.
let rec eval (ast: Expr)(s: Scope): Expr * Scope =

match ast with
. . .

| FunDef (_, _) -> ast, s
. . .

Amazingly, that’s it for function definition.

Function Calls in PLUSLANGλ

Function calls are a little more complicated. However, this is the last
feature we will be adding to PLUSLANGλ, and it’s a fancy feature, so
a little complexity is warranted. Don’t worry, as before, we will walk
through it step by step.

Let’s start by adding a case to Expr. A function call applies an argu-
ment list to a function definition.

| FunCall of fundef: Expr * args: Expr list

Parsing a function call is much like parsing a function definition,
since we are going to use the [] list parser we came up with before.
It’s almost exactly the same pattern.
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let arglist = pbetween (pchar '[') (pad (pmany0sep expr (pchar ' '))) (pchar ']')
let callws0 = pad (pstr "call")
let funCallExpr = pseq (pright callws0 expr) arglist FunCall

And, of course, add funCallExpr to expr.
Evaluating function calls is where things get a little tricky, because

we want to be able to support “calling a lambda” like,

call fun [x y] + x y [1 2]

but also “calling a function by name” like,

tt
let f
fun [x y] + x y

call f [1 2]

Let’s consider calling a definition directly, since it is the simplest part.
What does a lambda expression like (λx.x)y “do”? First, it defines a
new variable called x. Then, it assigns the argument, y to the variable
x. Then it evaluates the body, in this example, x. In fact, PLUSLANG++
could already do all of those operations, couldn’t it? Let p be a param-
eter, v be an argument, and e be the body in the lambda expression
(λp.e)v. Doesn’t the following program essentially do the same thing?

push
tt
let p v

pop e

The above program pushes a new scope, binds v to p, executes e in
the new scope, then restores the old scope. If you think about it, all we
really need to do is to rewrite any function call we get into something
like the above. But how might we handle functions with multiple ar-
guments? Again, the lambda calculus provides some guidance. Isn’t
a function of multiple arguments just a curried lambda expression? In
other words, isn’t fun [x y] + x y basically just λx.λy.+ x y? So we
just need to “nest” the pattern.
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push
tt
let p_1 v_1
pop
push
tt

let p_2 v_2
pop e

Let’s make a lambda helper method to make it easy to generate our
PLUSLANGλ function call pattern. Think of this as a kind of template
that lets us plug in the parts of a function. Because the evaluator has
direct access to the Expr type, we can forego parsing and just create an
AST fragment directly.

let lambda p v e =
ScopePush(

ThisThat(
Let(p, v),
ScopePop(e)))

Nowwe have the pieces we need to be able to evaluate a function call.
Remember, there are two cases for function definitions: a bare lambda
expression and a variable. To distinguish between the two cases, wewill
pattern-match on the function definition parameter. We can also return
an errorwhen somebody tries to perform a function call with something
that is not a function.

| FunCall (f, args) ->
match f with
| Var _ ->

. . .

| FunDef (pars, bod) ->
. . .

| _ -> failwith "Can only call functions."

The first thing we should probably do is to make sure that the user
called the function with the correct number of parameters.

| FunDef (pars, bod) ->
if List.length pars <> List.length args then

failwith "Number of arguments must match number of parameters."
. . .

If we look at our lambda helper definition above, it would be conve-
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nient to be able to pair a parameter with its argument so that we can
call our lambda template helper correctly.109 What we want to do is to 109 I have a lot of practice writing little

code generators like this so you might
be surprised to learn that I still find
code generation confusing. Fortunately,
we can work through many problems
like this by hand. I came up with this
section by working through it on paper.
If you’re confused, try working through
this on paper.

recursively call the lambda helper for every pair of parameter and ar-
gument. If you do this exercise out on paper, one thing you’ll discover
is that we need to generate our code from the inside out. The reason
is that we want the first argument given in a function call to be applied
to the outermost variable in a lambda abstraction. In other words, we
want the parts of a function definition to be assembled as follows.

call fun [p1 . . . pn] <expr> [a1 . . . an]≡ (λp1.. . .λpn.<expr>)a1 . . . an

Calling the template helper lambda p3 a3 <expr>generates code that
evaluates the expression

(λp3.<expr>)a3

Nesting two calls, like lambda p2 a2 (lambda p3 a3 <expr>) gen-
erates

(λp2.λp3.<expr>)a2 a3

Nesting three calls, like lambda p1 a1 (lambda p2 a2 (lambda p3

a3 <expr>)) generates

(λp1.λp2.λp3.<expr>)a1 a2 a3

There aremanyways to approach this process, butwheneverweneed
to call a function recursively for every argument in a list, fold is a good
approach. The code below zips parameters and arguments together,
reverses them so that we process them inside-out, then folds them to-
gether into a big lambda expression.

| FunDef (pars, bod) ->
if List.length pars <> List.length args then

failwith "Number of arguments must match number of parameters."
let pa = List.zip pars args |> List.rev
let f =

pa |>
List.fold (fun acc (par,arg) -> lambda par arg acc) bod

. . .

The last thing to do is to evaluate the code we just generated.
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| FunDef (pars, bod) ->
if List.length pars <> List.length args then

failwith "Number of arguments must match number of parameters."
let pa = List.zip pars args |> List.rev
let f =

pa |>
List.fold (fun acc (par,arg) -> lambda par arg acc) bod

eval f s

Now, how do we handle calling a function by name? We’ve already
done most of the work. We simply need to lookup the value of the vari-
able (which is a function definition), make a new function call, then call
it.

| FunCall (f, args) ->
match f with
| Var _ ->

let fundef, _ = eval f s // lookup function definition
let fcall = FunCall(fundef, args) // replace call to var with call to def
eval fcall s // evaluate function call

| FunDef (pars, bod) ->
if List.length pars <> List.length args then

failwith "Number of arguments must match number of parameters."
let pa = List.zip pars args |> List.rev
let f =

pa |>
List.fold (fun acc (par,arg) -> lambda par arg acc) bod

eval f s
| _ -> failwith "Can only call functions."

At long last, that’s it!

Does it Work?

To test our implementation, we candefine some lambda expressions and
see if evaluating them does the right thing.

For example, I’m pretty sure that (lx.ly.+ x y) 1 2will evaluate to
3. Let’s write the corresponding PLUSLANGλ program and seewhether
it does. Here’s our program.



IMPLEMENTING FUNCTIONS 201

tt
let
f
fun
[x y]
+
x
y

call
f
[1 2]

And here’s us running it.

$ dotnet run adder-function.plus
Expression: ThisThat
(Let (Var 'f', FunDef ([Var 'x'; Var 'y'], Plus (Var 'x', Var 'y'))),
FunCall (Var 'f', [Num 1; Num 2]))

Result: Num 3

This is very satisfying. It’s a real programming language now!

How Far Can You Go?

My favorite litmus test for aworking language is a simple one: (λx.x)(λx.x).
Does that work?

call
fun [x] x
[fun [x] x]

Running it,

$ dotnet run litmus.plus
Expression: FunCall (FunDef ([Var 'x'], Var 'x'), [FunDef ([Var 'x'], Var 'x')])
Result: FunDef ([Var 'x'], Var 'x')

Wow! The complete code for PLUSLANGλ can be found in Listing 4.
Congratulations on making it through all of this.

If you systematically test this implementation, you will find that not
all PLUSLANGλ programs do what the lambda calculus predicts. Such
cases are common in real programming languages. It is difficult to meet
all of the engineering challenges while remaining faithful to program-
ming language theory. For example, programming language designers
frequently sacrifice theoretical purity for speed. If you’re looking for a
challenge, see if you can discover one or more cases in PLUSLANGλ.
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Listing 4: A complete implementation for PLUSLANGλ.
open Combinator

type Expr =
| Num of int
| Var of char
| Plus of left: Expr * right: Expr
| Let of name: Expr * e: Expr
| ThisThat of this: Expr * that: Expr
| ScopePush of e: Expr
| ScopePop of e: Expr
| FunDef of pars: Expr list * body: Expr
| FunCall of fundef: Expr * args: Expr list

type Scope =
| Base
| Env of m: Map<char,Expr> * parent: Scope

// lookup variable named c in given scope
let rec lookup c s: Expr =

match s with
| Base ->

failwith ("Unknown variable '" + c.ToString() + "'")
| Env (m, parent) ->

if (Map.containsKey c m) then
Map.find c m

else
lookup c parent

// store variable named c with value v in Scope
// s, overwriting an existing value if necessary;
// returns updated Scope
let store c v s: Scope =

match s with
| Base -> failwith "Cannot store to base scope."
| Env (m, parent) ->

let m' = Map.add c v m
Env (m', parent)

// get the parent scope of the current scope
let parentOf env: Scope =

match env with
| Base ->

failwith "Cannot get parent of base scope."
| Env (_, parent) -> parent

(* forward references for recursive parsers *)
let expr,exprImpl = recparser()
(* helpers *)
let pad p = pbetween pws0 p pws0
let pmany0sep p sep = pmany0 (pleft p sep <|> p)

(* numbers *)
let num = pmany1 pdigit |>> (fun ds -> stringify ds |> int |>

Num)
let numws0 = pad num

(* addition *)
let plusws0 = pad (pchar '+')
let plusExpr = pseq (pright plusws0 expr) expr Plus
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(* variables *)
let var = pad pletter |>> Var
let letws0 = pad (pstr "let")
let letExpr = pseq (pright letws0 var) expr Let

(* sequential composition *)
let ttws0 = pad (pstr "tt")
let ttExpr = pseq (pright ttws0 expr) expr ThisThat

(* scope operations *)
let spushws0 = pad (pstr "push")
let spopws0 = pad (pstr "pop")
let scopeExpr =

(pright spushws0 expr |>> ScopePush) <|>
(pright spopws0 expr |>> ScopePop)

(* function definition *)
let funws0 = pad (pstr "fun")
let parlist = pbetween (pchar '[') (pad (pmany0sep var (pchar '

'))) (pchar ']')
let funDefExpr = pseq (pright funws0 parlist) expr FunDef

(* function call *)
let callws0 = pad (pstr "call")
let arglist = pbetween (pchar '[') (pad (pmany0sep expr (pchar '

'))) (pchar ']')
let funCallExpr = pseq (pright callws0 expr) arglist FunCall

(* top-level expressions *)
exprImpl :=

plusExpr <|>
letExpr <|>
ttExpr <|>
scopeExpr <|>
funDefExpr <|>
funCallExpr <|>
numws0 <|>
var

let grammar = pleft expr peof

let parse input : Expr option =
match grammar (prepare input) with
| Success(ast,_) -> Some ast
| Failure(_,_) -> None

let charFromVar e =
match e with
| Var c -> c
| _ -> failwith "Expression is not a variable."

(* generates a "function gadget" *)
let lambda p v e =

ScopePush(
ThisThat(

Let(p, v),
ScopePop(e)))

let rec eval (ast: Expr)(s: Scope): Expr * Scope =
match ast with
| Num n -> Num n, s
| Plus (left, right) ->
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let r1, s1 = eval left s
let r2, s2 = eval right s1
match r1, r2 with
| Num n1, Num n2 -> Num(n1 + n2), s2
| _ -> failwith "Can only add numbers."

| Var c ->
lookup c s, s

| Let (var, e) ->
let r, s1 = eval e s
let c = charFromVar var
let s2 = store c r s1
r, s2

| ThisThat (this, that) ->
let _, s1 = eval this s
let r, s2 = eval that s1
r, s2

| ScopePush e ->
let s1 = Env (Map.empty, s)
eval e s1

| ScopePop e ->
let res,s1 = eval e s
let parent = parentOf s1
res,parent

| FunDef (_, _) -> ast, s // do nothing
| FunCall (f, args) ->

match f with
| Var _ ->

let fundef, _ = eval f s // lookup function
definition

let fcall = FunCall(fundef, args) // replace call to
var with call to def

eval fcall s // evaluate function call
| FunDef (pars, bod) ->

if List.length pars <> List.length args then
failwith "Number of arguments must match number

of parameters."
let pa = List.zip pars args |> List.rev
let f =

pa |>
List.fold (fun acc (par,arg) -> lambda par arg

acc) bod
eval f s

| _ -> failwith "Can only call functions."

[<EntryPoint >]
let main argv =

if argv.Length <> 1 then
printfn "Usage: dotnet run \"<file>\""
exit 1

// does the file exist?
if not (System.IO.File.Exists argv[0]) then

printfn "%s" ("File '" + argv[0] + "' does not exist.")
exit 1

// read file
let input = System.IO.File.ReadAllText argv[0]

// initialize root scope
let env = Env(Map.empty, Base)
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match parse input with
| Some ast ->

printfn "Expression: %A" ast
let result, _ = eval ast env
printfn "Result: %A" result

| None -> printfn "Invalid expression."
0





The Rise of Worse is Better

By Richard P. Gabriel, Lucid, Inc. An excerpt from “Lisp: Good News, Bad News, How to Win Big.” (1989)
It is worth mentioning before you read this article that UNIX and UNIX-like derivative operating systems (like
Linux) are, in 2023, the most popular on the planet. Virtually every smartphone, smart TV, or smart appliance
runs either Android (a form of Linux) or iOS (a direct descendent of the original AT&T UNIX). The MACOS is a
hybrid of AT&TUNIX and FreeBSDUNIX. EvenWindows users can now download and install an official Microsoft-
maintained UNIX environment called Windows Subsystem for Linux. History shows us that the New Jersey approach
has convincingly beaten the MIT approach. [—ed.]

I and just about every designer of Common Lisp and CLOS has had extreme exposure to the MIT/Stanford
style of design. The essence of this style can be captured by the phrase the right thing. To such a designer it is
important to get all of the following characteristics right:

• Simplicity—the design must be simple, both in implementation and interface. It is more important for the
interface to be simple than the implementation.

• Correctness—the design must be correct in all observable aspects. Incorrectness is simply not allowed.
• Consistency—the design must not be inconsistent. A design is allowed to be slightly less simple and less

complete to avoid inconsistency. Consistency is as important as correctness.
• Completeness—the designmust cover as many important situations as is practical. All reasonably expected

cases must be covered. Simplicity is not allowed to overly reduce completeness.

I believe most people would agree that these are good characteristics. I will call the use of this philosophy
of design the MIT approach. Common Lisp (with CLOS) and Scheme represent the MIT approach to design
and implementation.

The worse-is-better philosophy is only slightly different:

• Simplicity—the design must be simple, both in implementation and interface. It is more important for the
implementation to be simple than the interface. Simplicity is the most important consideration in a design.

• Correctness—the design must be correct in all observable aspects. It is slightly better to be simple than
correct.

• Consistency—the design must not be overly inconsistent. Consistency can be sacrificed for simplicity in
some cases, but it is better to drop those parts of the design that deal with less common circumstances than
to introduce either implementational complexity or inconsistency.

• Completeness—the designmust cover as many important situations as is practical. All reasonably expected
cases should be covered. Completeness can be sacrificed in favor of any other quality. In fact, completeness
must be sacrificed whenever implementation simplicity is jeopardized. Consistency can be sacrificed to
achieve completeness if simplicity is retained; especially worthless is consistency of interface.
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Early Unix and C are examples of the use of this school of design, and I will call the use of this design
strategy the New Jersey approach. I have intentionally caricatured the worse-is-better philosophy to convince
you that it is obviously a bad philosophy and that the New Jersey approach is a bad approach.

However, I believe that worse-is-better, even in its strawman form, has better survival characteristics than
the-right-thing, and that the New Jersey approach when used for software is a better approach than the MIT
approach.

Let me start out by retelling a story that shows that the MIT/New-Jersey distinction is valid and that pro-
ponents of each philosophy actually believe their philosophy is better.

Two famous people, one from MIT and another from Berkeley (but working on Unix) once met to discuss
operating system issues. The person from MIT was knowledgeable about ITS (the MIT AI Lab operating
system) and had been reading the Unix sources. Hewas interested in howUnix solved the PC loser-ing problem.
The PC loser-ing problemoccurswhen a user program invokes a system routine to perform a lengthy operation
that might have significant state, such as IO buffers. If an interrupt occurs during the operation, the state of the
user program must be saved. Because the invocation of the system routine is usually a single instruction, the
PC110 of the user program does not adequately capture the state of the process. The system routine must either
back out or press forward. The right thing is to back out and restore the user programPC to the instruction that
invoked the system routine so that resumption of the user program after the interrupt, for example, re-enters
the system routine. It is called PC loser-ing because the PC is being coerced into loser mode, where loser is the
affectionate name for user at MIT.

The MIT guy did not see any code that handled this case and asked the New Jersey guy how the problem
was handled. The New Jersey guy said that the Unix folks were aware of the problem, but the solution was
for the system routine to always finish, but sometimes an error code would be returned that signaled that the
system routine had failed to complete its action. A correct user program, then, had to check the error code to
determine whether to simply try the system routine again. The MIT guy did not like this solution because it
was not the right thing.

The New Jersey guy said that the Unix solution was right because the design philosophy of Unix was sim-
plicity and that the right thing was too complex. Besides, programmers could easily insert this extra test and
loop. The MIT guy pointed out that the implementation was simple but the interface to the functionality was
complex. The New Jersey guy said that the right tradeoff has been selected in Unix—namely, implementation
simplicity was more important than interface simplicity.

The MIT guy then muttered that sometimes it takes a tough man to make a tender chicken, but the New
Jersey guy didn’t understand (I’m not sure I do either).

Now I want to argue that worse-is-better is better. C is a programming language designed for writing Unix,
and it was designed using the New Jersey approach. C is therefore a language for which it is easy to write a
decent compiler, and it requires the programmer to write text that is easy for the compiler to interpret. Some
have called C a fancy assembly language. Both early Unix and C compilers had simple structures, are easy to
port, require few machine resources to run, and provide about 50%-80% of what you want from an operating
system and programming language.

Half the computers that exist at any point are worse than the median (smaller or slower). Unix and C work
fine on them. Theworse-is-better philosophymeans that implementation simplicity has highest priority, which
means Unix and C are easy to port on suchmachines. Therefore, one expects that if the 50% functionality Unix

110 The program counter, a variable that keeps track of which instruction a program is on.
On Intel machines, this value is stored in either the eip or rip registers, depending on
whether the machine is 32-bit or 64-bit. [—ed.]
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and C support is satisfactory, they will start to appear everywhere. And they have, haven’t they?
Unix and C are the ultimate computer viruses.
A further benefit of the worse-is-better philosophy is that the programmer is conditioned to sacrifice some

safety, convenience, and hassle to get good performance and modest resource use. Programs written using
the New Jersey approach will work well both in small machines and large ones, and the code will be portable
because it is written on top of a virus.

It is important to remember that the initial virus has to be basically good. If so, the viral spread is assured
as long as it is portable. Once the virus has spread, there will be pressure to improve it, possibly by increasing
its functionality closer to 90%, but users have already been conditioned to accept worse than the right thing.
Therefore, the worse-is-better software first will gain acceptance, second will condition its users to expect less,
and third will be improved to a point that is almost the right thing. In concrete terms, even though Lisp
compilers in 1987 were about as good as C compilers, there are many more compiler experts who want to
make C compilers better than want to make Lisp compilers better.

The good news is that in 1995 we will have a good operating system and programming language; the bad
news is that they will be Unix and C++.

There is a final benefit to worse-is-better. Because a New Jersey language and system are not really pow-
erful enough to build complex monolithic software, large systems must be designed to reuse components.
Therefore, a tradition of integration springs up.

How does the right thing stack up? There are two basic scenarios: the big complex system scenario and the
diamond-like jewel scenario.

The big complex system scenario goes like this:
First, the right thing needs to be designed. Then its implementation needs to be designed. Finally it is

implemented. Because it is the right thing, it has nearly 100% of desired functionality, and implementation
simplicity was never a concern so it takes a long time to implement. It is large and complex. It requires
complex tools to use properly. The last 20% takes 80% of the effort, and so the right thing takes a long time to
get out, and it only runs satisfactorily on the most sophisticated hardware.

The diamond-like jewel scenario goes like this:
The right thing takes forever to design, but it is quite small at every point along the way. To implement it to

run fast is either impossible or beyond the capabilities of most implementors.
The two scenarios correspond to Common Lisp and Scheme.
The first scenario is also the scenario for classic artificial intelligence software.
The right thing is frequently a monolithic piece of software, but for no reason other than that the right thing

is often designed monolithically. That is, this characteristic is a happenstance.
The lesson to be learned from this is that it is often undesirable to go for the right thing first. It is better to

get half of the right thing available so that it spreads like a virus. Once people are hooked on it, take the time
to improve it to 90% of the right thing.

A wrong lesson is to take the parable literally and to conclude that C is the right vehicle for AI software.
The 50% solution has to be basically right, and in this case it isn’t.

But, one can conclude only that the Lisp community needs to seriously rethink its position on Lisp design.
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Appendix B: Branching in git

The git version control tool has a feature called a branch. A branch is
essentially a copy of the source code from a given point in time. Branches
are particularly useful in the following scenarios:

• Multiple people are working on the source code simultaneously.
• You are working to implement an experimental feature that you may

later decide to undo.
• You decide that the master branch is only for well-tested code des-

tined for release.
• Each production release of a program is given its own branch.

And so on. There are many uses for branches. If you’re ever found
yourself copying code to another folder so that you could undo it later,
you really should be using branches instead. git is better at tracking
your files than you are.

tl;dr Version

If you already know what branching is and just need a refresher, here
are the commands described in this tutorial:

1. Create a new branch and switch to it: git checkout -b <branchname>
2. Switch branches: git checkout <branchname>
3. Merge changes into the current branch: git merge <name of other branch>

Otherwise, read on.
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Tutorial

Suppose you have a source code repositorywith the following commits.

This diagram shows the last three commits in our repository. Recall
that a commit is a snapshot of a repository during a point in time, and
that each commit is identified by a random hexadecimal number such
as the ones shown in the diagram.

In this diagram, all commits are currently in the default branch,which
is called master. In this case, the HEAD pointer points to the branch
pointer master. HEAD tells you which branch we are currently editing.
In this case, the current branch is master.

Creating a new branch

Imagine thatwe nowwant to implement a new feature: a function called
foo. But because this feature may take some time to implement, and be-
cause other people are actively working on the codebase, we decide to
work in a new branch. So create a new branch called “foo-prototype”:

$ git checkout -b foo-prototype

The above command creates a new branch called foo-prototype and
switches development to that new branch. Since we have not yet com-
mitted anything to our new branch, foo-prototype is essentially just a
copy of the masterpointer. But because HEAD alsopoints to foo-prototype,
that means that when we commit new code, that code will be added to
the foo-prototype branch.

The following diagram shows the state of our repository after run-
ning the above commannd.
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Switching branches

You can always switch to another branch. For example, if we wanted to
switch back to master, we would run

$ git checkout master

and if we wanted to switch back to foo-prototype we would run

$ git checkout foo-prototype

In each case, all that happens is that git moves the HEAD pointer.

Merging

Nowsupposewemodify our source code—perhapswe’ve implemented
a draft of our foo function—and we’ve committed it to our repository.
This diagram shows the updated state of our repository. Notice that
foo-prototype has now diverged from master.
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Let’s suppose that we continue on in this manner for awhile longer,
committing things to our foo-prototype branch. Additionally, let’s
suppose that our collaborators have also been busy, adding things to
our master branch in the meantime.

Finally, the big day arrives, and our foo-prototype is done. Wewant
to bring our changes back into the master branch.

To merge foo-prototype back into master, first we switch back to
the master branch.

$ git checkout master

Note that HEAD now points at master.
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Next, we ask git to merge the changes from foo-prototype into the
branch pointed to by HEAD.

$ git merge foo-prototype

If neither master nor foo-prototype have any changes to the same
file, then the merge will happen automatically and you will be left with
a new set of changes that you can commit.

Dealing with merge conflicts

It is muchmore likely, though, that there is a file that was edited in both
branches. In this case, git needs your help to merge the two sets of
files. This is called amerge conflict. Merge conflicts are not something to
fear—rather, think of them as a helpful feature. git is telling you that
the merge went fine except for a handful of files.

For example, suppose the file filezzz was modified in both master
and in foo-prototype. After asking git to merge, wewill see amessage
like the following.
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$ git merge foo-prototype
Auto-merging filezzz
CONFLICT (content): Merge conflict in filezzz
Automatic merge failed; fix conflicts and then commit the result.

Running git status will show the conflicting files.

$ git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: filezzz

no changes added to commit (use "git add" and/or "git commit -a")

Uponopening filezzz in our editor, we see that githelpfullymarked
the region of the file that is in conflict.

Some stuff
<<<<<<< HEAD
Some other more stuff
=======
Some more stuffs
Stuff
>>>>>>> foo-prototype
Some other stuff

What this says is that the entire file is the same except for a tiny region.
In HEAD, that region contains

Some other more stuff

and in foo-prototype that region contains

Some more stuffs
Stuff

To merge, we decide what we want (e.g., “I think Stuff is fine for
now”), and so we replace the entire region between <<<<<<< HEAD and
>>>>>>> foo-prototype, inclusive. The file now contains:
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Some stuff
Stuff
Some other stuff

git looks to see that you’ve removed the <<<<<<< and >>>>>>>mark-
ers to know when you’ve resolved a merge conflict. Now we can commit
those changes.

$ git commit -am "merge"
[master 116d2a4] merge

Finally, our repository is in the following state and we are done.





Appendix C: A Short LATEX Tutorial

This tutorial walks you through:

• how to pronounce LATEX;
• compiling a LATEX document;
• dealing with compiler errors;
• mathematical formulas; and
• formatting code.

This tutorial assumes that you already have LaTeX installed on your
machine. If you don’t, you need to install it111. Our UNIX lab machines 111 https://www.latex-project.org/

get/already have LATEX installed. Several students also report to me that
Overleaf112 is a pleasant alternative to installing LATEX locally, but I have 112 https://www.overleaf.com/

not tried it myself.

Pronouncing LATEX

LATEX is pronounced LAH-tekh. The “TEX” part consists of the Greek
characters, tau, epsilon, and chi, and is a reference to the Greek word,
technē, meaning “art” or “craft,” which is the root of the word technical.
TEXwaswritten by the computer scientist Donald Knuth. The “La” part
comes from Leslie Lamport, who was the person who packaged up TEX
with a handy set of macros to make writing easier.113 113 Both Knuth and Lamport have

contributed extensively to the field
of computer science, and have been
subsequently awarded Turing Awards
for their work. To be clear, though, those
Turing Awards were not for TEX/LATEX.

Compiling a LATEX document

Suppose youhave aLATEXfile called file.tex. You can compile file.tex
to a PDF like so:

$ pdflatex file.tex

https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.overleaf.com/
https://www.overleaf.com/
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pdflatex will print out a lot of stuff. If your file.tex has no errors,
you should see output that looks something like the following,

Output written on file.pdf (1 page, 27256 bytes).

and you will have a PDF version of your LATEX document.

Dealing with compiler errors

If things gowrong, youwill need to debug your LATEX, just as you debug
any other computer program. Look for missing brackets (e.g., [ and ])
or curly braces (e.g., { or }), look for typos in commands, and above all,
read the output that the compiler is printing. LATEX error messages are
not the most understandable things, but they usually do tell you where
to find the error.

One important thing to be aware of is that the LATEX compiler usually
drops you into an interactive shell instead of just stopping (like javac
does). For example,

$ pdflatex file.tex
... lots of output ...
! Undefined control sequence.
<recently read> \tod

l.19 \item \tod
{ANSWER}

?

Annoyingly, your cursor sits on this line and doesn’t give you even a
clue as to what to do.114 The correct thing to do is easy: type a capital X 114 By the way, I used LATEX for years

without actually knowing the correct
way to escape from this situation. I am
not ashamed to admit that I actually
used to call the kill command to
forcibly shutdown LATEX.

and press the ENTER key.
More importantly, this compiler message actually tells me where to

find the problem. On line 19 (l.19), something about the LATEX com-
mands \item \tod causes an Undefined control sequence. Onemight
argue that this is not a very good error message, but hey, all the infor-
mation you need is there.

When I open up my file.tex I see the following on line 19:

\item \tod{ANSWER}

Oops! \tod should be \todo. After fixing this and running pdflatex
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again, file.tex again compiles correctly.

Mathematical formulas

One of LATEX’s great strengths is that it can produce beautiful-looking
mathematical formulae. This is mostly easy to do, too: just put a math-
ematical expression in between a pair of dollar signs. For example:

$x + 5$

will produce a pretty-looking x+ 5 expression.
I have not yet come across a mathematical figure that I could not re-

produce using LATEX. That’s not to say that it is always easy, just that it is
possible. See the LATEX/Mathematics115 reference for more information. 115 https://en.wikibooks.org/wiki/

LaTeX/Mathematics

Formatting code

Code is sometimes frustrating to format in LATEX. Fortunately, there are
two approaches, one easy, and one... less easy. Let’s look at the easy one
first.

LATEXhasmany special “environments” that you can use for specially-
formatted blocks of text. A very useful one for code is called verbatim.
You use it like this:

\begin{verbatim}
code goes here

\end{verbatim}

For example,

\begin{verbatim}
public static void main(String[] args) {
System.out.println("Hello world!");

}
\end{verbatim}

verbatimwill reproduce the text using amonospaced “typewriter” font
that looks a lot like how we normally format code.

But LATEX actually lets you do some very fancy things with code. In-
stead of using the verbatim environment, you can alternatively use the
lstlisting environment. You need to do a little extra work:

https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
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1. Youmust add \usepackage{listings} to the top of your document.

2. Youmust supply a \lstset command, e.g., \lstset{language=Pascal}
for the Pascal language.

3. You can then put your code inside a lstlisting environment.

The listings package can produce genuinely beautiful looking for-
matted code, with syntax highlighting and everything. If you’re inter-
ested, see the LATEX/Source Code Listings116 page. 116 https://en.wikibooks.org/wiki/

LaTeX/Source_Code_Listings

https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
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