
Lab 2
Due Sunday, September 24 by 10:00pm

Handout 7
CSCI 334: Fall 2023

Turn-In Instructions
For each question in this assignment, create a project directory. For example, the source directory for
question 1 should be in a folder called “q1”. You should be able to cd into this directory and then run the
program by typing the command “dotnet run”, with additional arguments depending on the question.

Each program should be split into two pieces: a “Program.fs” file that contains the main method and
associated program-startup helpers (if needed), and another “Library.fs” file that contains the function(s)
of interest in the question. All library code should be in a module named “CS334”. Be sure to provide usage
output (defined in main) for all programs that require arguments. For full credit, your program should both
build and run correctly.

Turn in your work using the git repository assigned to you. The name of the repository will have the form
hhttps://aslan.barowy.net/cs334-f23/cs334-lab02-<USERNAME>.git. For example, if your username
is abc1, the repository would be https://aslan.barowy.net/cs334-f23/cs334-lab02-abc1.git.

Honor Code
This is a partner lab. You may work with another classmate if you wish, and you may co-develop solutions.
Remember: although you can work on code together, you must each independently write up and submit
your solution. No code copying is allowed. Be sure to tell me who your partner is by committing a
collaborators.txt file to your repository (5 points).

This assignment is due on Sunday, September 24 by 10:00pm.

Sanity Check: Students sometimes submit incomplete assignments, accidentally forgetting to run git add
for all of their files. Fortunately, there is an easy way to make sure that this does not happen to you. Before
you are done, git clone your repository to a new folder and then try building/running everything. It only
takes a couple minutes and can spare you from headaches later on.

Reading

1. (Required) “Advanced F#”

2. (As needed) Microsoft’s Official F# Documentation

hhttps://aslan.barowy.net/cs334-f23/cs334-lab02-<USERNAME>.git
https://aslan.barowy.net/cs334-f23/cs334-lab02-abc1.git
https://docs.microsoft.com/en-us/dotnet/fsharp/

Problems

Q1. (15 points) . Peanut Butter and Jelly
pbj(n: int) : string is a function that returns a sentence, which is a string composed of a se-
quence of words. n is a positive, nonzero integer supplied by the user. For each consecutive integer
between 1 and n inclusive, pbj either appends the empty string to its output or a word. A word is
a string that contains the substring “peanutbutter” if n is evenly divisible by 3 or “jelly” if n is
evenly divisible by 5. Each outputted word in the final sentence should be separated by a single space
character. The entire sentence must end with the word “time” and a “.” character. Finally, use
recursion to solve this problem.
Here are the first ten outputs of the program.

$ dotnet run 1
time.
$ dotnet run 2
time.
$ dotnet run 3
peanutbutter time.
$ dotnet run 4
peanutbutter time.
$ dotnet run 5
peanutbutter jelly time.
$ dotnet run 6
peanutbutter jelly peanutbutter time.
$ dotnet run 7
peanutbutter jelly peanutbutter time.
$ dotnet run 8
peanutbutter jelly peanutbutter time.
$ dotnet run 9
peanutbutter jelly peanutbutter peanutbutter time.
$ dotnet run 10
peanutbutter jelly peanutbutter peanutbutter jelly time.

The project directory for this question should be called “q1”. You should be able to run your program
on the command line by typing, for example, “dotnet run 10”.

Q2. (10 points) . List duplication
Define a function listDup(e: 'a)(n: int) : 'a list that takes an element, e, of any type, and a
non-negative number, n, and returns a list with n copies of e:

> listDup "moo" 4;;
val it : string list = ["moo"; "moo"; "moo"; "moo"]

> listDup 1 2;;
val it : int list = [1; 1]

> listDup (listDup "cow" 2) 2;;
val it : string list list = [["cow"; "cow"]; ["cow"; "cow"]]

The project directory for this question should be called “q2”. You should be able to run your program
on the command line by typing, for example, “dotnet run moo 4”.

Q3. (30 points) . Zipping and Unzipping
(a) Write a function zip(xs: 'a list)(ys: 'b list) : ('a * 'b) list that computes the prod-

uct of two lists of arbitrary length. You should use pattern matching to define this function:

> zip [1;3;5;7] ["a";"b";"c";"d"];;
val it : (int * string) list = [(1, "a"); (3, "b"); (5, "c"); (7, "d")]

When one list is longer than the other, repeatedly pair elements from the longer list with the last
element of the shorter list.

> zip [1;3] ["a";"b";"c";"d"];;
val it : (int * string) list = [(1, "a"); (3, "b"); (3, "c"); (3, "d")]

In the event that one or both lists are completely empty, return the empty list. Note that in
dotnet fsi, calling the function as below will produce an error because F# cannot determine
the type of the element of an empty list.

> zip [1;3;5;7] [];;

zip [1;3;5;7] [];;
^^^^^^^^^^^^^^^^

code/stdin(14,1): error FS0030: Value restriction. The value 'it'
has been inferred to have generic type

val it : ((int * int * int * int) * '_a) list
Either define 'it' as a simple data term, make it a function with
explicit arguments or, if you do not intend for it to be generic,
add a type annotation.

To make empty lists work, explicitly provide a type for the return value.

> let xs : (int * int) list = zip [1;3;5;7] [];;
val xs : (int * int) list = []

(b) Write the inverse function, unzip(xs: ('a * 'b) list) : 'a list * 'b list, which behaves
as follows:

> unzip [(1,"a"); (3,"b") ;(5,"c"); (7,"de")];;
val it : int list * string list = ([1; 3; 5; 7], ["a"; "b"; "c"; "de"])

(c) Write zip3(xs: 'a list)(ys: 'b list)(zs: 'c list) : ('a * 'b * 'c) list, that zips
three lists.

> zip3 [1;3;5;7] ["a";"b";"c";"de"] [1;2;3;4];;
val it : (int * string * int) list =
[(1, "a", 1); (3, "b", 2); (5, "c", 3); (7, "de", 4)]

You must use zip in your definition of zip3.
(d) Provide a main function that exercises all of the above cases, plus a few more that you think of

yourself.

The project directory for this question should be called “q3”. You should be able to run this program
using “dotnet run” without any additional arguments.

Q4. (20 points) . F# Map for Trees
(a) The binary tree datatype

type Tree<'a> =
| Leaf of 'a
| Node of Tree<'a> * Tree<'a>

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this
type must have at least a root node).
Write the function

let maptree f t = ???

where f is a function and t is a tree. maptree should return a new tree that has the same structure
as t but where the values stored in t have the function f applied to them.
Graphically, if f is a function that can be applied to values stored in the leaves of tree t, and t
is the tree on the left, then maptree f t should produce the tree on the right.

•

•

•

w i

•

l l

•

•

i a

•

m s

•

•

•

f w f i

•

f l f l

•

•

f i f a

•

f m f s

For example, if f is the function let f x = x + 1 then
maptree f (Node(Node(Leaf 2, Leaf 3), Leaf 4));;
should evaluate to Node (Node (Leaf 3,Leaf 4),Leaf 5).

(b) In a comment block above your maptree definition, explain your definition in one or two sentences.
Comment blocks in ML look like the following.

(*
* Says hello to the given name.
*
* @param name The name.
* @return Nothing.
*)
let sayHello name =

printfn "Hello %s!" name

Be sure to provide @param and @return tags.
(c) What type does F# give to your function? Why isn’t it the type ('a → 'a) → Tree<'a> →

Tree<'a>? Provide an answer in the comment block of your maptree function.

The project directory for this question should be called “q4”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and output like the kind shown above
should be printed to the screen. Be sure to provide several examples that demonstrate that your
function works correctly.

Q5. (20 points) . F# Reduce for Trees
The binary tree datatype

type Tree<'a> =
| Leaf of 'a
| Node of Tree<'a> * Tree<'a>

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this type
must have at least a root node).

(a) Write a function
treduce : ('a → 'a → 'a) → Tree<'a> → 'a

that combines all the values of the leaves using the binary operation passed as the first parameter.
In more detail, if oper : 'a → 'a → 'a and t is the nonempty tree on the left in this picture,

•

•

•

w i

•

l l

•

•

i a

•

m s

oper

oper

oper

w i

oper

l l

oper

oper

i a

oper

m s

then treduce oper t should be the result obtained by evaluating the tree on the right. For
example, if f is the function

let f x y = x + y

then treduce f (Node(Node(Leaf 1, Leaf 2), Leaf 3)) = (1 + 2) + 3 and the output is 6.
(b) In a comment block above your treduce definition, explain your definition of treduce in one or

two sentences. Be sure to provide @param and @return tags.

The project directory for this question should be called “q5”. You should be able to run your program
on the command line by typing, for example, “dotnet run” and output like the kind shown above
should be printed to the screen. Be sure to provide several examples that demonstrate that your
function works correctly.

Q6. (1
10

th bonus point) . Optional: Feedback
I always appreciate hearing back about how easy or difficult an assignment is.
For 1

10
th of a bonus to your final grade, please fill out the following Google Form.

https://forms.gle/rogKXiBC1RuTK2uf9

