Lab 10 Handout 26

Due Sunday, Dec 3 by 10pm CSCI 334: Fall 2023

Turn-In Instructions
Before starting work, create a new branch in your existing project-specific repository called specification.
Commit and push work for this lab to the specification branch.

This assignment is due on Sunday, Dec 3 by 10pm.

Sanity Check: Students sometimes submit incomplete assignments, accidentally forgetting to run git add
for all of their files. Fortunately, there is an easy way to make sure that this does not happen to you. Before
you are done, git clone your repository to a new folder and then try building/running everything. It only
takes a couple minutes and can spare you from headaches later on.

Honor Code

This is a pair programming lab. Like previous partner labs, you may work with a partner. Unlike previous
labs, you may collaborate to produce a single solution. You do not need to submit a collaborators.txt
file for this lab.

Reading

1. (Read) Read “Appendix B: Branching in git” from the course packet.

2. (As needed) Read “Implementing Scope” and “Implementing Functions” from the course packet if
your language makes use of these features.

Problems

QL. (10 POINES) vttt ettt et Language Name
If your language does not have a name, now is the time to give it one. Silly, nerdy, and/or humorous

names are especially appreciated.

Q2. (L0 POINES) - e e e Organization
Be sure to organize your implementation across at least three files, as in the previous assignment:
e Your parser should reside in a file called Parser.fs.
e Your interpreter / evaluator should reside in a file called Evaluator.fs.
¢ Your main function, as well as any necessary driver code, should reside in a file called Program.fs.
¢ You may create additional library files as necessary.
All of these files should be stored in a directory called code. The precise arrangement of other files
inside the code folder does not matter to me, and is up to you.

For this checkpoint, your implementation does not need to do anything new beyond what was required
in your minimal working version. I will check to see that you committed something, but I will not
test it, so you are encouraged to continue hacking on it, or even leave it in a broken state for this
checkpoint.

Q3. (60 POINLS) - vttt Draft project specification

In this lab, you will create a draft project specification. As we're just getting started, your specification
does not yet need to fully describe your final project. However, it should be “section-complete,” meaning



that your document should include text for all of the sections outlined below. When you submit your
final project, at the end of the semester, your specification will need to fully describe your project.

Include your project specification as a IATEX source file and pre-built PDF. Please call the WTEX file
specification.tex and call the PDF specification.pdf.

You may start by reusing the text you wrote for your project proposal. The project specification should
explain the purpose, motivation, and technical implementation details of your language. By the end
of the semester, a sufficiently-motivated user in possession of your specification should have all the
information they need in order to write programs in your language using your documentation. For
some of the sections below, you may not need to change your text much; for other sections, expect to
write new text.

Please be sure to have the following sections:

(a) Introduction (> 2 paragraph)
What problem does your language solve? Why does this problem need its own programming
language?

(b) Design Principles (> 1 paragraph)

Languages can solve problems in many ways. What are the guiding aesthetic or technical principles
that underpin its design?

(c) Examples (> 3 examples)
Provide three example programs in your language that will eventually work. Unlike the previous
text you wrote here, these examples should conform to your formal grammar. Explain exactly how

each example will be executed (e.g., dotnet run "example-1.lang") and provide the expected
output (e.g., 2).

(d) Language Concepts (> 2 paragraphs)

What are the core concepts a user needs to understand in order to write programs? Think in
terms of both “primitives” and “combining forms.” What are the key ideas and how are they
combined?

(e) Formal Syntax (as much space as needed)

Provide a formal syntax your language, written in Backus-Naur form. This documentation should
provide all of the rules necessary for a user to generate a valid program. You may omit whitespace
from your BNF specification if you find it cumbersome to include.

Minimally, your BNF should include everything you have currently implemented in your small
language. However, you are encouraged to add BNF syntax for features that you have not yet
implemented, as a way of “thinking them through.” The final version of this section should match
your actual implementation, since I will be using it to understand your language and to write
programs of my own.

(f) Semantics (1 short description per syntactic element)

If necessary, update the semantics section from your previous checkpoint to explain all of your
currently-supported data types and operations. This section should explain how a user under-
stands the effect of a syntactic construct given in the formal syntax section. This need not be so
detailed that it explains what the code does; instead it should explain what the syntax means. In
other words, focus on what each language element achieves instead of explaining how it does it.
Your semantics section need not be in a tabular form if a table is inconvenient.

(g) Remaining Work (> 1 paragraph)

Add a section at the end of your specification that explains which features are not yet implemented
but which you plan to implement by the final project deadline. This section should include any
essential remaining data types and operations described in your proposal that you have not yet
implemented. You can discuss remaining work informally; think of this section as a personal
checklist.



Q4. (20 POINLS) ...ttt Example programs

Provide the example programs discussed in your Examples section as separate files so that it is
easy to find and use them. Please call them example-1.<whatever>, example-2.<whatever>,
and example-2.<whatever>. For example, I might call my example programs example-1.lang,
example-2.lang, and example-3.lang.



