
Unit Testing in F#

Unit testing is a code testing method designed to demonstrate the cor-
rectness of code at the unit level. A unit is in terms of whatever the
smallest functional unit is within a given language or project. For ex-
ample, in functional code, a unit is often thought of as a module, func-
tion, or primitive operation. In object-oriented code, a unit is usually
a class and its methods. More generally, unit testing ensures that an
abstract data type (which is an abstract data structure and associated
operations) produces expected inputs and outputs.

It should be noted that unit testing is only one form of testing. Fur-
thermore, test procedures—unless they exhaustively test all possible
inputs—are not sufficient to ensure the correctness of a unit. Neverthe-
less, tests are one of the easiest ways to check that a program behaves as
expected and tests are one of the most important steps toward correct-
ness. Tests are especially useful in helping to ensure that the addition
of new features to a codebase does not change the expected behavior.
Consequently, test methods like unit testing are widely practiced in the
software industry.

Running example

We will be revisiting the code we built together as a part of the parser
combinator tutorial: the code that parses sentences into a list of words.
If you don’t remember what we did, please revisit the reading on Parser
Combinators.

In this tutorial, I encourage you to follow along on your ownmachine.

254

MsTest

Microsoft .NET comes equippedwith a unit test framework calledMsTest.
Since MsTest has F# language bindings, we can write MsTest unit tests
natively in F#. The dotnet new command is capable of generating an F#
test project, however, in order tomake such a test project useful, it needs
to be combined with an existing F# console or library project. In .NET,
the facility for combining two projects together is an organizational fea-
ture called a solution.

.NET solutions

Let’s start by generating a solution thatwill tie an F# library and unit test
project together. Solutions are the standard way of combining projects
in .NET, and as long as all projects can be compiled on the .NET plat-
form, they can be combined. For example, a solution can be composed
of F#, C#, and Visual Basic projects, along with test projects, and so on.

First, create a new directory to house your solution and cd into it.

$ mkdir test_tutorial
$ cd test_tutorial

Now type:

$ dotnet new sln

If the solution is created successfully, you will see:

The template "Solution File" was created successfully.

Next, let’s create a very simple parser library. We will reuse the sen-
tence parser code developed in the chapter on Parser Combinators.

$ mkdir SentenceParser
$ cd SentenceParser
$ dotnet new classlib -lang F#
The template "Class library" was created successfully.

First, download the Combinator.fs library67. Next, download the 67 https://williams-cs.github.
io/cs334-f22-www/assets/code/
Combinator.fs.txt

SentenceParser.fs library68. Note that these downloads are slightly dif-
68 https://williams-cs.github.io/
cs334-f22-www/assets/starter/
SentenceParser.fs.txt

ferent than example we worked through in Parser Combinators. I’ve
added some extra information to both the Success and Failure types

https://williams-cs.github.io/cs334-f22-www/assets/code/Combinator.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt
https://williams-cs.github.io/cs334-f22-www/assets/starter/SentenceParser.fs.txt

UNIT TESTING IN F# 255

to help with debugging. After downloading, you should have at least
the following files in your SentenceParser folder:

$ ls
Combinator.fs. Library.fs SentenceParser.fs SentenceParser.fsproj

Delete the auto-generated Library.fs file.

$ rm Library.fs

Open the SentenceParser.fsprojfile and add Parsers.fs and SentenceParser.fs
as compile targets. Remove the Library.fs target. Your SentenceParser.fsproj
should look like this:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<Compile Include="Combinator.fs" />
<Compile Include="SentenceParser.fs" />

</ItemGroup>

</Project>

Now, cd back into the parent directory and add the SentenceParser
project to the solution.

$ cd ..
$ dotnet sln add SentenceParser/SentenceParser.fsproj

If the project is added successfully, you will see:

Project `SentenceParser/SentenceParser.fsproj` added to the solution.

We should now be able to build our solution.

$ dotnet build

Note that, in a solution, all .fs library filesmust be inside a module or
a namespace. In the files supplied, the code in Combinator.fs is under
the Combinator module, and the code in SentenceParser.fs is under
the SentenceParser module. Go ahead, have a look. If you forget to

256

do this for your own project, you will see a compile-time message like:
Files in libraries or multiple-file applications must begin with
a namespace or module declaration.

Creating the MsTest project

Now we can create the MsTest project and test our code. In the solution
directory, create a new directory called SentenceParserTests, cd into
it, and then use the dotnet tool to create an MsTest project.

$ mkdir SentenceParserTests
$ cd SentenceParserTests
$ dotnet new mstest -lang F#

If you did everything correctly, you should see:

The template "Unit Test Project" was created successfully.

We now need to make the SentenceParser a compile-time depen-
dency of the SentenceParserTests project so that the test framework
can call our library from test code.

$ dotnet add reference ../SentenceParser/SentenceParser.fsproj
Reference `..\SentenceParser\SentenceParser.fsproj` added to the project.

Finally, we need to cd back into our parent directory and add the
SentenceParserTests project to the solution.

$ cd ..
$ dotnet sln add SentenceParserTests/SentenceParserTests.fsproj
Project `SentenceParserTests/SentenceParserTests.fsproj` added to the solution.

Again, running dotnet build should successfully build the entire
project.

Understanding the test format

Let’s open up the SentenceParserTests/Tests.fs file and have a look.

$ cat SentenceParserTests/Tests.fs
namespace SentenceParserTests

open System
open Microsoft.VisualStudio.TestTools.UnitTesting

UNIT TESTING IN F# 257

[<TestClass>]
type TestClass () =

[<TestMethod>]
member this.TestMethodPassing () =

Assert.IsTrue(true);

This file contains one test, called TestMethodPassing. Since MsTest
was originally designed to test C#, tests utilize classes for organization.

Test suites. A collection of tests is called a test suite. Generally, a test
suite is a set of tests designed to test one unit. For example, an entire suite
might test different aspects of the same single algorithm. You might,
for instance, write a test that checks for the common case for a sorting
routine, another test that tests the corner case where the input is already
sorted, and another test that tests another corner case where the input
is empty (e.g., an empty list). All of these tests are packaged together in
a test class, which houses the test suite. Test classes that house test suites
must have the [<TestClass>] annotation as above.

Testmethods. Each test is called a testmethod. InMsTest, each testmethod
must literally be amethod inside a test class. The test suite shown above
has a single test called TestMethodPassing. There are two important
facts to note about test methods. First, the method is prefixed with the
[<TestMethod>] annotation. Second, test methods must be no-parens
functions; or more precisely, they need to F# functions that take unit.
The test above does nothing; it simply asserts true, which forces a test
to pass.

Note that it is up to you how you want to organize your tests into
test suites. Choose the organization that you find most useful. Out of
laziness, I usually just put all the tests for an entire module inside a single
test suite, and only break it into separate test suites once the test suite
has grown to an unmanageable size. Remember, programming is an art,
not a science!

Running the tests

If you are in the SentenceParserTests folder, you can run dotnet test
and you should see output that looks a bit like this.

258

$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 1, Skipped: 0, Total: 1, Duration: 15 ms

Above, you can see that the entire test suite consisting of a single test
passed (Passed!) and took 15 milliseconds to run.

You can also run the dotnet test command from the parent direc-
tory which contains the solution. In that case, you will see test output
from every project that actually contain tests.

Adding a new test

Finally, let’s add a new test that actually tests our parser. In fact, let’s get
rid of the silly parser that always succeeds.

At the highest level, a hand-wavy description of our parser is that it
takes a string representing a sentence and turns it into a list of words.
The purpose of a test is to ensure that such hand-wavy descriptions are
backed up with real code that does what you say and is checked every
time you run the test suite. A nice side-effect of such tests is that they
serve to document use cases for your code.

First, add an open statement to the top of your SentenceParserTests/Tests.fs
file so that it can access your SentenceParser library.

open SentenceParser

Next, replace the test TestClass with a new one. Here is the com-
plete code for the Tests.fs file:

UNIT TESTING IN F# 259

namespace SentenceParserTests

open System
open Microsoft.VisualStudio.TestTools.UnitTesting
open SentenceParser

[<TestClass>]
type TestClass () =

[<TestMethod>]
member this.ValidSentenceReturnsAWordList() =

let input = "The quick brown fox jumped over the lazy dog."
let expected = ["The"; "quick"; "brown"; "fox"; "jumped"; "over"; "the"; "lazy"; "dog"]
let result = parse input
match result with
| Some ws ->

Assert.AreEqual(expected, ws)
| None ->

Assert.IsTrue false

The logic is as follows. We supply an input called input, which is
a sentence. We also supply an expected value, which is the output we
expect parse to producewhen given the input. Next, we call parsewith
input and store it in result. Since parse returns an option type (Some
if the parser succeeds, None if it does not), we pattern-match on result.
Finally,

1. if we get back Someword list ws, we check that ws is exactly the same
as theword list expected. Note the position of the expected parame-
ter. While Assert.AreEqual will fail anytime its two arguments dif-
fer, when it fails, it returns a helpful message based on the contents
of the expected parameter. Otherwise,

2. if we get back None, then the parse failed when it should have suc-
ceeded. In this case, we force the test to fail by supplying Assert.IsTrue
false.

Running dotnet test reports:

260

$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 1, Skipped: 0, Total: 1, Duration: 86 ms

So far so good.

Test-driven development
One of the many buzzwords you may hear out in industry is something
called “test-driven development” or TDD. The idea behind TDD is to
write tests before you write your implementation code. While there are
many fads in software development, I believe that this is genuinely a
good idea. For starters, providing an example of input and output of-
ten focuses your implementation efforts. Second, input and output ex-
amples fit nicely with functional programming, since, if you’re doing it
correctly, every function should be pure and every input should unam-
biguously produce the same output every time. 69 69 For deterministic functions.

Let’s add a test for a feature we do not yet have: the ability to parse
questions.

[<TestMethod>]
member this.ValidQuestionReturnsAWordList() =

let input = "Does the quick brown fox jump over the lazy dog?"
let expected = ["Does"; "the"; "quick"; "brown"; "fox"; "jump"; "over"; "the"; "lazy"; "dog"]
let result = parse input
match result with
| Some warr ->

Assert.AreEqual(expected, warr)
| None ->

Assert.IsTrue false

Running dotnet test produces our first failing test, because we do
not yet support this feature.

$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...

UNIT TESTING IN F# 261

A total of 1 test files matched the specified pattern.
Failed ValidQuestionReturnsAWordList [35 ms]
Error Message:
Assert.IsTrue failed.
Stack Trace:

at SentenceParserTests.TestClass.ValidQuestionReturnsAWordList() in [...] Tests.fs:line 30

Standard Error Messages:
[attempting: grammar on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: sentence on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: sprefix on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: upperword on "Does the quick brown fox jump over the lazy dog?", next char: 0x44]
[success: upperword, consumed: "Does", remaining: " the quick brown fox jump over the lazy dog?", next char: 0x20]
[attempting: words0 on " the quick brown fox jump over the lazy dog?", next char: 0x44]
[attempting: word on "the quick brown fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "the", remaining: " quick brown fox jump over the lazy dog?", next char: 0x20]
[attempting: word on "quick brown fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "quick", remaining: " brown fox jump over the lazy dog?", next char: 0x20]
[attempting: word on "brown fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "brown", remaining: " fox jump over the lazy dog?", next char: 0x20]
[attempting: word on "fox jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "fox", remaining: " jump over the lazy dog?", next char: 0x20]
[attempting: word on "jump over the lazy dog?", next char: 0x44]
[success: word, consumed: "jump", remaining: " over the lazy dog?", next char: 0x20]
[attempting: word on "over the lazy dog?", next char: 0x44]
[success: word, consumed: "over", remaining: " the lazy dog?", next char: 0x20]
[attempting: word on "the lazy dog?", next char: 0x44]
[success: word, consumed: "the", remaining: " lazy dog?", next char: 0x20]
[attempting: word on "lazy dog?", next char: 0x44]
[success: word, consumed: "lazy", remaining: " dog?", next char: 0x20]
[attempting: word on "dog?", next char: 0x44]
[success: word, consumed: "dog", remaining: "?", next char: 0x3f]
[success: words0, consumed: " the quick brown fox jump over the lazy dog", remaining: "?", next char: 0x3f]
[success: sprefix, consumed: "Does the quick brown fox jump over the lazy dog", remaining: "?", next char: 0x3f]
[attempting: period on "?", next char: 0x44]
[failure at pos 48 in rule [pchar '.']: period, remaining input: "", next char: EOF]
[failure at pos 48 in rule [pchar '.']: sentence, remaining input: "", next char: EOF]
[failure at pos 48 in rule [pchar '.']: grammar, remaining input: "", next char: EOF]

Failed! - Failed: 1, Passed: 1, Skipped: 0, Total: 2, Duration: 116 ms

This output says that the ValidQuestionReturnsAWordList test failed.
It failed, of course, because we have not yet implemented this feature.
Observe that, since we used the debug feature, the failing test printed
out what the program echoed. Tests only print output when they fail.

Let’s implement the feature.

A Question Parser
I am not going to belabor parsers again here, so let’s fast-forward to the
most intuitive feature addition. First, add a qmark parser.

let qmark = (pchar '?') <!> "question mark"

262

Next, modify the sentence parser so that it accepts either a period or
a question mark.

let sentence = pleft prefix (period <|> qmark) <!> "sentence"

The complete, modified code is as follows:

module SentenceParser

open Combinator

let qmark = (pchar '?') <!> "question mark"
let period = (pchar '.') <!> "period"
let word = pfun (pmany1 pletter) (fun cs -> stringify cs) <!> "word"
let upperword = pseq pupper (pmany0 pletter) (fun (x,xs) -> stringify (x::xs)) <!> "upperword"
let words0 = pmany0 (pright pws1 word) <!> "words0"
let prefix = pseq upperword words0 (fun (w,ws) -> w::ws) <!> "sprefix"
let sentence = pleft prefix (period <|> qmark) <!> "sentence"
let grammar = pleft sentence peof <!> "grammar"

let parse input : string list option =
match grammar (prepare input) with
| Success(ws,_) -> Some ws
| Failure(_,_) -> None

Let’s test it again.

$ dotnet test
... some output omitted ...

Microsoft (R) Test Execution Command Line Tool Version 17.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
A total of 1 test files matched the specified pattern.

Passed! - Failed: 0, Passed: 2, Skipped: 0, Total: 2, Duration: 79 ms

Looks good!

Conclusion

In this tutorial, we learned:

UNIT TESTING IN F# 263

• How to create a solution.
• How to add a project to a solution.
• How to add a test project to a solution.
• How to add a test.
• How to run tests.
• How to do test-driven development, where tests are written before

implementation code.

I encourage you to add tests to your own projects. This means that
you will probably need to ”wrap” your existing projects in a solution,
but the above tutorial should be enough of a guide to get you started.

There aremany additional Assertmethods beside the AreEqualmethod.
For additional information, see the documentation on theMsTest Assert
class70. After clicking on the link, look for the ”Methods” dropdown in 70 https://docs.microsoft.com/

en-us/dotnet/api/microsoft.
visualstudio.testtools.
unittesting.assert?view=
mstest-net-1.2.0

the left column.
Finally, if youwant another tutorial, have a look atMicrosoft’s official

F# unit test tutorial71 which goes into more detail than this tutorial.
71 https://docs.microsoft.com/
en-us/dotnet/core/testing/
unit-testing-fsharp-with-mstest

https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.assert?view=mstest-net-1.2.0
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-fsharp-with-mstest

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C
	Anything else?

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	Proof by Reduction
	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

