Proof by Reduction

Like all good explanations, we start with a joke that is probably only
funny to the storyteller:

An engineer and a mathematician were hiking when they were suddenly
attacked by a bear. The engineer grabbed a stick and, yelling and stabbing
wildly with the stick, managed to fight off the bear. The next day, the
two went out for another hike, and again, they were attacked by the same
bear. This time, the mathematician, realizing that he was the closest to
a stick, picked it up and handed it to the engineer, thereby reducing the
bear problem to a previously solved problem.

Reduction proofs®® are a little counterintuitive. When we construct
them for the purposes of computability proofs, we will always have two
facts in mind:

1. We want to disprove a fact about some problem of interest, A (e.g.,
“A is computable.”)

2. Wealready know a fact something about some other, possibly related
problem, B (e.g., “B is not computable”).

Like all formal tools, reduction proofs are a template (a “form”). The
trick is to recognize when the problem fits the mold. When the tool is
used correctly, out pops the answer.

Here’s the template we're going to follow. Let P be a logical proposi-
tion (a statement that is either true or false), and let () be another logical
proposition implied by P. In other words,

P=qQ

For example, P could be the proposition “it is sunny outside.” @
could be “it is not snowing.” If we think that one implies the other, then
we would read P = @ as “if it is sunny outside, then it is not snowing.”
This statement is clearly true. P really does imply (). However, since this
is Williamstown, if you all look outside, it might actually be snowing. If
that’s the case, it cannot be sunny outside.

The above example should suggest to you that one way you might try
to disprove a statement P is to show that an implied statement () is false.

% Reduction proofs should not be
confused with lambda reductions.
Although they both share the word “re-
duction,” they are completely unrelated
topics.

104

In other words, if we claim P = (@), and P really implies (), and then we
show =@, then it must also be the case that —P. (If you're having trouble
seeing why I am allowed to use this trick, see the derivation from first
principles at the bottom of this section.)

Finding a reduction

Let’s apply this template. What is the problem of interest? Consider
the following question: Is it possible to write a function, halty? When
given a program p and an input i, halt, returns true if and only if p (1)
does not halt.

Given about what we know about computability (i.e., that halt isnot
computable), we should have a nagging suspicion that halty is also not
computable. But can we set up a logical implication of the above form
to prove that halt is not computable? Indeed we can. Remember—the
key is to imply something that we know cannot be true.

Let’s start with a fact that we know cannot be true. Q: “halt is com-
putable.”

Now, can we show that () follows logically from the fact that we want
to disprove? P: “haltg is computable.”

We're going to use the same P = () logic trick as in our snowing
example above, and show that if P is true, P logically implies (). This
is where reductions fit in. A reduction is an algorithm that turns one
problem into another problem. Why do we want an algorithm? Well,
last time I checked, if computers did one thing well, it was logic. So if
one can write an algorithm for transforming problems, it’s logical, and
a computer really could do it.

Remember when you learned about proving things using mathemat-
ical induction? When proving the inductive step, which is an implica-
tion of the form P = @), recall that you were allowed to assume P. Since
we are also attempting to prove an implication, we also get to assume P
is true. Remember that P is “halt is computable.”

Here’s an algorithm (in Python) that turns instances of halt into
haltg.

def halt(p,i):
return not haltO(p,i)

If we assume that P is computable, we really could have ahaltg func-
tion. Some really smart person could have coded it up and stuck it in a
library for us. So the above function, halt, should be possible, right? I
didn’t do anything fancy. I just followed the rules of Python. halt just
calls halty and negates the result.

Looking back at our statements,

@Q: “halt is computable”

and
P: “haltg is computable”
what the reduction just showed is that P =). We can’t avoid P = @,
because look, I just made () happen using P. Therefore, it is true that P
implies Q.
But we also know, because I showed you in class (or if you're reading
this early, I will), is that () cannot be true. halt is not computable. Q).
Therefore haltg is not computable. —P.

Why does ~Q) = —~P when P =)?

We can derive what happens to the antecedent (P) of an implication
(P = @) when we know that the consequent () is not true. I claim
that P = @) islogically equivalent to the statement PV (). We can prove
this equivalence rigorously by working out a truth table.?® =P v Q is
easier to work with, because it gets rid of the pesky implication symbol
(whatever that means).

P Q@ -PvQ P=Q

T T T T
T F F F
F T T T
F F T T

We know that =PV @ is true, just as we do with our Python program
above. Let’s start our proof with that fact.
-PV Q@ = true given
- PV false = true | because (is false

-P =true because “anything” V false is just “anything”

P = false by negation

Therefore, if P = (Q itself is true and () is false, then P must be false.

PROOF BY REDUCTION 105

% When I am confused about what
conditionals do in code, I sometimes
work out truth tables. This is one

of those tricks that fellow students
occasionally mocked me for doing.
“Dan has to write out the truth tables

to understand it! Ha ha.” This is a silly
thing to be elitist about. Programming is
hard. I can still solve the problem. More
importantly, I am not confused.

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	Proof by Reduction
	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

