
Passing Pointers by Value

In C, all function parameters are passed by value. People are frequently
confused aboutwhat thismeans, particularlywhenpointers are involved.
So what does “pass by value” mean?

Let’s look at an example:
#include <stdio.h>

void add(int *x, int *y, int *z) {
*z = *x + *y;

}

int main() {
int x = 1;
int y = 2;
int z;
add(&x, &y, &z);
return z;

}

We will walk through this program step-by-step. In the beginning,
there is nothing. Note that the arrow in the following diagram points at
the line about to be evaluated, what we call an instruction pointer.

When your computer first executes a function, the function preamble
runs. The preamble allocates storage for the variables in the function.



62

Colloquially, we sometimes refer to this as “setting up the stack frame.”
If there are any function parameters, at this time, their values are copied
into the local storage allocated for them. In this example, there aren’t
any parameters.

The first line of the function assigns the value 1 to the local variable
x. What this means is that the value 1 is copied into the stack storage
reserved for x.

The same thing happens in the next line, except that 3 is copied into
the storage for y.



PASSING POINTERS BY VALUE 63

In the third line, we declare z but we don’t assign anything. In C,
nothing actually happens when we execute this line. The compiler al-
ready allocated local storage before the function ran, in the preamble. Al-
though nothing happens when we run this line of code10, it does have 10 To be more precise, it’s not so much

that the computer “does nothing” when
the line of code is executed; there is no
line of code after the C program has been
translated into machine language.

to be in the program, otherwise the compiler would not have knownwe
wanted storage for the z variable.

On the fourth line, the add function is called. But before that happens,
technically, there are four more steps. Why? Because we don’t know
what the arguments to the function are yet. They must be evaluated11 so 11 There are other techniques to provide

these arguments. Evaluating arguments
before calling the function is called
eager evaluation. Another technique,
popular with functional programming
languages, is called lazy evaluation. Lazy
evaluation defers the evaluation of
parameters until the moment that they
are needed by the called function. In
other words, lazy evaluation evaluates
arguments after the function is called.
The benefit of lazy evaluation is that
if a function never actually uses an
argument, the argument never needs to
be evaluated. However, most languages
choose eager evaluation because it is
simple to implement.

that they can be copied into add’s own stack frame.
First, add’s function preamble is run. Do you remember the purpose

of a preamble? If you don’t, go back and read the earlier mention of this
term. Function preambles need to be run before arguments are evalu-
ated. Why do you think that is?

Second, &x is evaluated. This line “gets the address of x,” and stores
the result (an address) into the first parameter of add.

Third, &y is evaluated and the result is stored into the second param-
eter of add.

Finally, &z is evaluated and the result is stored into the third param-
eter of add.



64

Now that all of the arguments to add are evaluated, the main subrou-
tine transfers control to the add subroutine. On most computers, this is
implemented with some kind of jump instruction. The process starts all
over again, this time for the add function. As before, in the beginning,
there is nothing in add’s stack frame.

Since each argument is a pointer (they all have type int *), their
values are addresses. I draw them using arrows to make things clearer,
but you should know that technically, pointers are actually stored as
numbers. Note that x, y, and z in add aren’t just different variables than
x, y, and z, in main, the variables in add have a different type (int * as
opposed to int). Remember that variable names are just names, and
as in real life, where two different people can have the same name, two
different variables in C can have the same name. Wewill talk aboutwhy,
exactly, this duplication of names does not confuse C when we discuss
scope. For now, observe that names are local to a function.

It’s worth noting that z in add really does point to an undefined vari-
able z in main. Yes, C lets you do things like that.

At this point, we execute the body of the add function. There’s a lot
going on, so as we did with function parameter evaluation, let’s break
the evaluation down into steps.



PASSING POINTERS BY VALUE 65

At a high level, we are assigning a value to a variable. What are we
assigning? The result of an addition. But, since there are a bunch of *
symbols in here, hopefully you suspect that there’s more to it than that.

First, we need to get the value of the right side of the assignment:

*x + *y

Well, to get the value of this expression, we need to know the value
of the left side of the addition:

*x

And to know that, we have to dereference x (that’s what *x says in
code, literally). What does it mean to dereference something? It means
that we follow the pointer stored in x and fetch the value it points to.
Now we know *x. It’s 1.

1 + *y

What do you think we do next? We need to know the right side of the
addition. *ydoes essentially the same thing as *x. Whenwedereference
y, we follow its pointer and find 2.

1 + 2

The right side of the assignment can now be evaluated since we have all
of the values. 1 + 2 = 3.

*z = 3

But wait... we still have a * on the left side of the assignment. That’s
because z is also a pointer. We don’t actually want to store 3 in z. That
wouldn’t make sense because 3 is an int while z is a pointer. Instead,
we want to follow the pointer stored in add’s z and store the value in this
other location. That other location happens to be z in main.

When you see a pointer on the left side of an assignment, what hap-
pens is the following:

1. Evaluate the right hand side (we did this already). 2. Store the
value of the right hand side in the location pointed to by the left hand
side.

So what happens now is that we store 3 in z in main.
Note that this is why add can get away with returning void. add di-

rectly manipulates memory stored in main’s stack frame. Also notice
that we did all this cool pointer stuff without any mention of malloc
(i.e., without variables having allocated storage duration). Pointers and
storage duration are different, but complementary concepts, as will be-
come clear in the next step.



66

Now that we’re at the end of the add function, add’s function epilogue
runs. It says how to restore the stack to its state before add was called.
The storage for x, y, and z in add goes away. The storage for each variable
goes awaybecause eachwas allocatedwith automatic storage duration—in
other words, it goes away automatically because we did not use malloc.

It is worthmentioning that the dirty little secret in most C implemen-
tations is that those values don’t really go away. The values are techni-
cally still stored in those locations. If you are clever, you can still even
read them12. What you should not do, however, is count on those val- 12 And this is something that clever

hackers may do!ues staying there, because themoment you call another function, they’ll
probably be overwritten.



PASSING POINTERS BY VALUE 67

Now that we’re back in main, we pick upwhere we left off and finally
return z. Ever wondered what return z actually means? It means
“copy the value stored in z into the location specified by the calling func-
tion and then jump to the function epilogue.” So we copy 313 and move 13 Where, exactly, 3 gets copied depends

on which function called main, which is
a detail I’ve omitted here.to the epilogue.

Finally the program is done; main’s epilogue is run and the final stack
frame is torn down.

At this point, what to do next is somebody else’s problem.


	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C
	Anything else?

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	Proof by Reduction
	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial


