Parser Combinators

We’ve discussed parsing lightly until this point. We will now dig down
into the algorithmic details of parsing.

Before we start, you should know that there is a wealth of literature
on parsing. For practical reasons, it was one of the earliest problems at-
tacked by computer scientists. As a result, exploring this topic on your
own can be a little daunting, as a typical description of parsing goes
deep into the weeds about grammar classes, computational complex-
ity, and so on. Compounding this, many computer scientists like to say
offhandedly that parsing “is a solved problem,” which is only true in
the shallowest sense. Even with nice formal models from theoretical
computer science, building a real-world parser remains something of
an art.

Instead, we will look at parsing from a functional standpoint. A
parser is a program that reads in a string as input and, if the input is a
valid sentence in a grammar, (1) it emits a result, otherwise it (2) fails.
This very simple definition allows us to construct a parser in a simple,
recursive manner, using little building blocks. We call these building
blocks parser combinators.

Why do we need parsers?

If you've never built a parser before, its role may not be obvious, so I will
state it here clearly. In computer science, we use parsers to transform
serial data (e.g., a string) into structured data (e.g., a tree). When build-
ing a programming language, the first thing we need to do is to convert
a string (a program) into our preferred representation of a computer
program, which is a tree. More precisely, that tree is an abstract syntax
tree (AST).

An AST is a tree where the interior nodes are operations and the leaf
nodes store data. Why do we want this representation? Because, in this
form, evaluating a program boils down to a traversal of the tree. For ex-
ample, in the form of program evaluation we call interpretation, we deter-
mine the “output” of a program by essentially performing a depth-first,
post-order traversal of the tree, combining data from the leaves with op-

218

erations in the nodes. The output is the final value computed when we
are done traversing the root node. In the form of program evaluation
we call compilation, we also traverse the AST, but instead, we emit ma-
chine instructions as we go, converting each step of the interpreter into
a sequence of instructions for a machine.

Parsers are used in many more places, from data storage to network
protocols. You will probably encounter a few in your professional life.
It suffices to say that we need them in the design of programming lan-
guages because they form the basis for building user interfaces for hu-
mans.

Parser Combinators

Before we dig into the technical details of how parser combinators work,
let me try to develop an intuition as to what they do. There are two
essential ideas.

The first essential idea regarding parser combinators is to build “big”
parsing functions out of “little” parsing functions. And when I say func-
tion, I mean the simplest kind of function you can have: a combinator. A
combinator is a function of only bound variables. In other words, this is a
combinator:

let add ab=a+b
but this is not a combinator:
let add a = a + b

because b is a free variable. Where does b come from? It comes from
the environment somewhere, and its precise meaning depends on the
scope rules for your language. Therefore, a combinator is a function that
can be understood without needing any context. It’s a simple function
without any tricks up its sleeve. A parser combintor is therefore a simple
function that does parsing.

But how do we make “big” parsers out of “little” parsers? The second
essential idea is that some parser combinators function as “glue.” We
call such “glue” functions combining forms.

Armed with “little” parsers and “glue,” we can make “big” parsers
of great sophistication that don’t seem complex. Parser combinators
are exactly the kind of big, ugly problem that becomes easy (or at least
manageable) when you employ a functional programming approach.

Metaphor

When I work with parser combinators, I like to keep a simple metaphor
in my head: plumbing. The function of a pipe is to carry liquid from

one point to another. As you're installing the plumbing in your house, Al
Figure 21: As a toddler, I once flushed

:]) ; o a Kewpie doll down a toilet. When my
ing about how the shapes of the pipes fit together. Sometimes you join father asked me where my doll was, T

multiple pipes. Sometimes you split them. When you put the right stuff pointed at the toilet and said “In there.”
T have no memory of this incident, but
my father, who had to disassemble the
When you put stuff in pipes that you shouldn’t, they get clogged and house’s plumbing to find the doll, has
yet to forgive me.

you're only tangentially thinking about water (or sewage); you're think-

in the pipes, they do their jobs, moving liquid from one place to another.

back up (Figure 21).

A combinator is like a pipe. It takes an input string, the string
we are parsing. Depending on what the pipe does, it usually outputs a
string of some form; that string represents the remainder of the input.
But combinators may also connect to other combinators; the output of
one combinator is fed into the input of the other.

When all goes well, and you flush the appropriate stuff down your
parser pipes, you are able to parse input successfully. The parser shown

here is designed to parse "dan", and when given the input "dan", it
works just fine.
rem: “an”

rem:“n”
) dan ’ T

res:“d” res:“a” res:“n”

=@

glue

=P Success (“dan”)

But when you flush the wrong stuff down the parser pipes, it backs
up, and you get a failure.

< Failure(“n”)

rem:“d” I l

rem:“ad”

“dad” >

glue

res:“d”

Formal Definitions

Let’s get a little more formal in our definition of parser combinators.

220

I'said that “a parser is a program that reads in a string as input and, if
the input s a valid sentence in a grammar, (1) it emits a result, otherwise
it (2) fails.” Let’s start with the easy part, shall we? What is “input”?

Input

Here’s a simple working definition.
type Input = string

We will revisit this definition later, but it's something to build on.

Success and Failure

What does it mean for a parser to “succeed” or “fail”?

You might be tempted to say that this means that a parser simply re-
turns a bool, and if you were a theoretician studying grammars, that
might be sufficient. As a practical matter, we usually expect parsers
to return structured data, so we need something a little more nuanced.
How about the following ML data structure?

type Outcome<'a> =

| Success of result: 'a

| Failure

We use 'a because we might want to return any kind of data.

That’s pretty close to what we want, but it’s not perfect. The rea-
son is that we want to be able to combine little parsers into big parsers.
So one way to attack the problem of parsing is to think up a small set
of primitive parsers that we can glue together that make more compli-
cated parsers. Each parser then, takes a little nibble at the input and
hands the rest of the input, the remainder, off to the next parser. So let’s
expand our definition:

type Outcome<'a> =
| Success of result: 'a * remainder: Input
| Failure

As a practical matter, we also add a small amount of extra debugging
information to Failure: the position in the string that the failure oc-

curred, and which parser failed.
type Outcome<'a> =

| Success of result: 'a * remainder: Input

| Failure of fail_pos: int * rule: string

That’s good enough for now.

Parser

Now we can construct an elegant definition of a parser.
type Parser<'a> = Input -> Outcome<'a>

This definition says is that a parser is a function from input to an
outcome, either success or failure. On success, we communicate back a
result and the remaining portion of the input.

Primitive parsers

You may be surprised to hear that this is enough to start building prim-
itive parsers. The two most primitive are parsers that either succeed no
matter what or fail no matter what. We call them presult and pzero,
respectively.

let presult(a: 'a)(i: Input) : Outcome<'a> = Success(a,i)
let pzero(i: Input) : Outcome<'a> = Failure(0, "pzero")

presult takes a return value ('a) and an input and returns success.
pzero just returns failure.

Now, because both of these functions are written using curried argu-
ments, they have an interesting and very useful property. If you call
them without their last argument, the input, they return a Parser<'a>.
I clearly remember the first time I learned this fact because my brain
melted out through my ears. Maybe you're smarter than I am. But let’s
pop these definitions in dotnet fsi and play with them a bit just to be
sure that we’re on the same page.

> let presult(a: 'a)(i: Input) : Outcome<'a> = Success(a,i);;

val presult : a:'a -> i:Input -> Outcome<'a>

> let pzero(i: Input) : Outcome<'a> = Failure(O, "pzero");;

val pzero : i:Input -> Outcome<'a>

> presult;;
val it : ('a -> Input -> Outcome<'a>)

> presult "hi";;
val it : (Input -> Outcome<string>) = <fun:it@10-1>

> let p : Parser<string> = presult "hi";;

val p : Parser<string>

PARSER COMBINATORS 221

222

> pzero;;

val it : (Input -> Outcome<'a>)

> let p : Parser<'a> = pzero;;
val p : Parser<'a>

There’s no magic here. Partially applying presult to "hi" returns a
parser. pzero already is a parser.
OK, one more primitive parser. This is where the magic begins.

let pitem(i: Input) : Outcome<char> =
if i = "" then
Failure(0, "pitem")
else
Success (i.[0], i.[1..1)

The pitem parser attempts to read in one character. Notice that the
type of the Outcome is char. If it can read one character, then it returns
that one character as the result (i.[0]) part of the Success value,
putting the rest of the string (i.[1..]) in the remainder part. Oth-
erwise, it fails.

Combining forms

Ok, we have three primitive parsers now. How do we “glue” them to-
gether? All combining forms are based on one idea, called “bind”.

let pbind(p: Parser<'a>)(f: 'a -> Parser<'b>) (i: Input)
match p i with
| Success(a,i') -> f a i'

| Failure(pos,rule) -> Failure(pos,rule)

Notice that we are prefixing all of our parser functions with the letter
p- This is just to make it clear which functions belong to the primitive
parsing library. You can name your functions whatever you want.

: Outcome<'b>

pbind takes a Parser<'a>, p, and a function f from 'a to anew Parser<'b>,

and returns a new Parser<'b> Why do I say that it “returns a new
parser” when that’s not precisely what the definition says? Well, look
carefully in the REPL; it does say that. You're just not accustomed to see-
ing it yet. Here’s an example of me partially-applying pbind.

> let p : Parser<char> = pbind pitem (fun ¢ -> pitem);;
val p : Parser<char>

The key bit is that I left off the Input, i. Remember how I said that all
parser combinators take Input as their last argument, and, if you leave

PARSER COMBINATORS 223

it off, they're parsers? This is what I meant. That returned parser does
the following:

1. Attempt to parse Input i with p.

2. Onsuccess, run f on the result of the successful parse, yielding a new
parser, p2.

3. Run p2 on the remainder of the first parse.

4. If p2 is successful, return the outcome of the second parse, otherwise
fail.

If you're like me, you might be thinking “OK, I can see that you can
glue parsers together, but how is this useful?” Great question. I think
the most obvious answer is: don’t we want to be able to parse more than
one character? So let’s see how we can achieve that using what we know.

Parsing in sequence

Let’s construct a new combining form called pseq. We'll use this to
parse two characters.

let pseq(pl: Parser<'a>) (p2: Parser<'b>)(f: 'a*'b -> 'c) : Parser<'c> =
pbind pl (fun a ->
pbind p2 (fun b ->
presult (f (a,b))

The pseq parser is a “combining” function. It takes two parsers, p1
and p2, and runs them, one after the other, returning the result as a
pair of elements. Note that we use pbind in this definition, and presult
finally makes an appearance. We first bind p1 to a function that takes
p1’s result as input and then binds p2 to a function that takes p2’s result,
which is then handed to the presult parser, which takes both results
and runs function £ on them. This may seem sort of abstract to you, but
if you work it out on paper, it’s not so bad. It captures everything we
need to say in order to parse two things in sequence.

Now, notice, that this definition does not take an Input. Or does it?
Actually, it does! But we were able to leave it off. Why? Because p1, p2,
pbind, and presult also all take an i, and since we only ever partially
apply those functions, we are always “passing the buck” to the next
function in the chain. Since the entire body of the pseq function punts
on handling input, even though its components must handle input, it means
that pseq itself must handle input. In fact, that’s what the return type
says: Parser<'c>.

Part of the reason why this sort of melted my brain the first time I
saw it is that I kept thinking: but why don’t you just handle the input?

224

Wouldn't the definition be clearer? The PL theorist who taught me com-
binators thought the answer to this question was obvious (“NO!”) so
he didn’t spend much time on it. As a result, it took me a little time to
appreciate how much simpler partial application can make a program.
The gain in simplicity is especially profound when it is the case that all
of your functions pass around the same parameter (in our case, Input).

This fact sheds light on the popularity of a another model for pro-
gramming: object oriented programming. In that model, you pass around
all kinds of parameters implicitly—you just stick that data inside an ob-
ject and pass the object around instead. So it solves the same problem,
but using a different mechanism. But unlike functional programming,
where you are forced to think about all of the data you need all of the
time, we sometimes forget about the data we stick in objects. In partic-
ular, we forget that we need to update it, leading to bugs. Functional
code forces us think about that data. The tradeoff is that we never have
stale values floating around in objects. Personally, functional program-
ming forced me to stop being lazy with objects, and the benefits—fewer
bugs—became immediately clear to me.

OK, enough chit-chat. Let’s use pseq to actually parse two characters.

let ptwo : Parser<string> =
pseq pitem pitem (fun (cl,c2) -> cl.ToString() + c2.ToString())

So we just constructed a parser that parses two characters, and then
takes the pair of characters, converts them to strings (remember a char
is not a string and in F# we have to explicitly convert them), and con-
catenates them, returning a string. Let’s try it.

> ptwo "hello world";;

val it : Outcome<string> = Success ("he","llo world")

Cool, huh? Watch what happens when the input does not have two
characters left.

> ptwo "h";;
val it: Outcome<string> = Failure (0, "pitem")

Because we built up our parsers simply and from first principles, the
combined parser does the right thing.

End of file

There’s one more essential parser that we need to specify, and it requires
that we change our definition of input a little. It is often necessary, for
example, in your “top level” parser, to be able to state “only succeed if
you’ve parsed all of the input.” In other words, we need to check that

we’ve reached the end of the input string.

Unfortunately, nowhere in our definition of Input do we maintain a
notion of “the end”. We probably should. Let’s modify our definition
of Input just a little. >

type Input = string * bool

Now Inputisa pairof string and bool. The bool represents whether
we’ve found the end. This is useful because often a parser definition,
which is composed of many little parsers, slices and dices the input into
many pieces, and those pieces themselves are sliced and diced. With-
out tracking the “real end” of the string, we might be tempted to think
that “the end” was merely the end of the input string. But if we’ve cut
the string in half somewhere, that most definitely will not be the case.
There’s only one end!

This affects the definition of pitem above, but not by much. In fact,
it doesn’t change at all how we use them, just whether we can actually
test for EOF. Here’s a definition of an EOF parser:

let peof(i: Input) : Outcome<bool> =
match pitem i with
| Failure(pos, rule) ->
if snd i = true then
Success(true, i)
else
Failure(pos, rule)
| Success(,) -> Failure((position i), "peof")

First, peof tries to get a character, and if that fails and we’re at the real
end of the string, succeed. Otherwise, fail.

Here’s a little function that we can call on our input string to turn
it into an Input so that the user does not have to think about how to set
up an Input the first time.

let prepare(input: string) : Input = input, true

A zillion more little parsers

Hopefully now you have the basic idea. You can make and combine
parsers from other parsers. That combined parser can be called using
string input, and it returns what you ask. At each step, you provide
a function f that says exactly how to build the data structure that you
return in the end (e.g., “concatenate two characters into a string”). It
can be whatever you want.

PARSER COMBINATORS 225

% Note that the combinator library

that comes with your starter code,
Combinator.fs, has an even fancier
definition for Input for efficiency. The
basic idea is the same, but note that the
definition is slightly different. Have a
look if you are curious. I try to make our
libraries easy to read.

226

In this section, I am going to tell you about a collection of other useful
parsers. I am not going to belabor their definitions, since you can just
look through the code and understand them if you need to. In many
cases, you will not need to. This, of course, is also not an exhaustive list
of parsers. Like I said, they build pretty much anything you want. The
set below is just a subset convenient to use for this course.

PARSER COMBINATORS 227

Parser

Type

Description

Example

presult

'a -> Input -> Outcome<'a>

Takes a result value 'a
and an input and returns
Success.

pzero

Input -> Outcome<'a>

Takes an input and returns
Failure.

pitem

Input -> Outcome<char>

Reads a single character.

peof

Input -> Outcome<bool>

Takes an input and returns
true if and only if there isno
more input left to consume.

pbind

p:Parser<'a> -> f:('a ->
Parser<'b>) -> Input ->
Outcome<'b>

Form for combining a
parser p in an arbitrary way
with another parser using
a function f£.

pseq

pl:Parser<'a> -> p2:Parser<'b>
-> f:('a * 'b => 'c) ->
Parser<'c>

Combine two parsers pi
and p2 in sequence, and
combine their results using
a function f£.

pseq pitem pitem (fun (a,b) ->
(a,b) parses two characters and
returns them as a 2-tuple.

psat

f:(char -> bool) ->
Parser<char>

Read a character, and if
it satisfies the predicate
£, successfully return the
character.

psat (fun ¢ -> ¢c = 'z')
the character z

parses

pchar

c:char -> Parser<char>

Read a character, and if it is
the same as the given char-
acter c, successfully return
it.

pchar 'z' parses the character z

pletter

Parser<char>

Reads
returns successfully if the
character is alphabetic.

a character and

pletter parses any alphabetic letter.

pupper

Parser<char>

Reads
returns successfully if the
character is uppercase

a character and

alphabetic.

pupper parses any uppercase alpha-
betic letter.

pdigit

Parser<char>

Reads
returns successfully if the
character is numeric.

a character and

pdigit parses any numeral.

<|>

pl:Parser<'a> -> p2:Parser<'a>
-> string * bool ->
Outcome<'a>

Ordered choice. Note that
this is an infix combinator,
for readability. First tries
the parser p1, and if that
fails, it backtracks the in-
put and tries parser p2. The
first parser to succeed re-
turns the result. If both
parsers fail, choice fails.

(pchar 'a') <|> (pchar 'b')
parses either the character a or the
character b.

|>>

p:Parser<'a> -> f:('a -> 'b)
-> Parser<'b>

Function application. Ap-
plies the function f to the
result of p if p is successful.

pdigit [>> (fun ¢ -> int
(string c)) converts a numeric
character into an integer.

228

’ Parser Type ‘ Description Example
pfresult p:Parser<'a> -> x:'b -> Run parser p and if success- | pfresult (pchar 'a') 'b' returns
Parser<'b> ful, return result x. This ba- | the character b when it finds a.
sically ignores the output of
p-
pmanyO p:Parser<'a> -> string * bool Parse zero or more occur- | pmany0 pletter parses a sequence
-> Outcome<'a list> rences of p in sequence, | of letters, stopping when no more
stopping when p fails. Note | letters can be found.
that this parser never fails!
pmany1 p:Parser<'a> -> Parser<'a Parse one or more occur- | pmanyl pletter parses a sequence
list> rences of p in sequence, | of letters of length 1 or more
stopping when p fails. To
succeed, p must succeed at
least once.
pwsO Parser<char list> Parses a sequence of zero | pwsO
or more whitespace charac-
ters.
pwsi Parser<char list> Parses a sequence of one | pwsi
or more whitespace charac-
ters.
pnl Parser<string> Parses a newline. Returnsa | pnl
stringinstead of a char be-
cause newlines are actually
two characters on Windows
machines.
pstr s:string -> Parser<string> Parses the string literal s. pstr "helloworld" parses
helloworld and only helloworld.
pleft pl:Parser<'a> -> p2:Parser<'b> | Parses pl and p2 in se- | pleft (pchar 'a') (pchar 'b')
-> Parser<'a> quence, returning only the | parses ab but only returns a.
result of p1. Discards the
result of p2.
pright pl:Parser<'a> -> p2:Parser<'b> | Parses pl and p2 in se- | pright (pchar 'a') (pchar 'b')
-> Parser<'a> quence, returning only the | parses ab but only returns b.
result of p2. Discards the
result of p1.
pbetween popen:Parser<'a> -> Parses p in between parsers | pbetween (pchar '(') (pchar
pclose:Parser<'b> -> popen and pclose. Dis- | ')') (pmanyO pletter) returns
p:Parser<'c> -> Parser<'c> cards the resuls of popen | abc when given (abc).
and pclose.
<> p:Parser<'a> -> label:string Debug parser. This parser | pletter <!> "letter"
-> string * bool -> applies p and, as a side ef-
Outcome<'a> fect, prints some diagnostic
information given a label.
Very useful for figuring out
why a parser succeeds or
fails on a given input.
stringify | cs:char list -> string Convert the char list | stringify
called cs into a string. ['h';'e';'1';'1';'0"'] returns

hello

An example: parsing English sentences

Lets’s build a small parser for parsing well-formed English sentences.
As you will see, it’s not hard to find the limitations of this parser. But
after we build this together, you should have a good idea about how you
could extend it to parse more complex sentences.

First, what is an “English sentence”? Here’s some BNF:

<sentence> ::= <upperword> (<ws> <word>)* <period>
<upperword> ::= <upperletter> (<letter>)=*

<word> 1= (<letter>)+

<upperletter> ::= 'A' | 'B' | ... | 'Y' | 'Z"
<lowerletter> ::= 'a' | 'b' | ... | 'y'" | 'z'
<letter> ::= <upperletter> | <lowerletter>

<ws> =" | 'mt | 't | "rn"

<period> =Lt

Let’s further stipulate that the “structure” that I want to return from
my parser is a list of the words in the sentence. A string list should
work nicely. I would also like to know whether the parse succeeded or
failed, so let's wrap our string list in an option type®. So our end
result will be a function like:

let parse(input: string) : string list option =

. whatever ...

When building a parser using combinators, you can either start at the
top of your grammar and work your way down or you can start at the
bottom and work your way up. I'm sort of a bottom-up thinker, so we’'ll
start with the simplest parts; the ones that parse terminals.

Period has a simple grammar rule with only one terminal. Should be
easy.

let period = pchar '.'

This is hopefully self-explanatory.

Whitespace, as it turns out, is built-in. Let’s say, for now, that pws1 is
what we want.

OK, arbitrary letters. Again, we already have a parser for this called
pletter that parses both uppercase and lowercase letters. We also have
parsers for uppercase only (pupper) and lowercase onle (plower).

How about words? Our word production says:

PARSER COMBINATORS 229

®https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/options

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options

230

<word> ::= (<letter>)+

What does that mean? We're using an “extended” form of BNF called
EBNF here that lets us write repetition more concisely. + means “at least
one”. So what this says is “at least one <letter>”. We can unroll this if
we want into regular BNF.

<word> ::= <letter> <word>
| <letter>

So a <word> really is a recursive definition that requires at least one
<letter>. Fortunately for us, we don't have to think too hard about rep-
etition, because there’s a parser combinator that means “one or more”
called pmanyl. So a word is:

let word = pmanyl pletter

Which is great and all, but almost what we want. Remember how I said
that we wanted a “list of words” back and I said that this translated into
a string list? Well, what does pmany1l pletter actually return?

> let word = pmanyl pletter
val word : Parser<char list>

It actually returns a list of characters. Although I think we all can
agree that a list of characters is pretty much a string, we have to actually
convert one into the other to keep F# happy. We do that using the |>>
combinator.

> let word = pmanyl pletter |>> (fun c¢s -> System.String.Join("", cs))

val word : Parser<string>

That’s better.

Because we often translate lists of characters into strings, I've pro-
vided the stringify function that does this for you. So we can rewrite
word a little more simply.

let word = pmanyl pletter |>> stringify

Let’s test our work up until this point. Remember that we need to call
prepare on our input string before we can give it to our parsers.

> word (prepare "foobar");;
val it : Outcome<string> = Success ("foobar",("", true))

PARSER COMBINATORS 231

That looks promising. How does it handle a space in the middle?

> word (prepare "foo bar");;
val it : Outcome<string> = Success ("foo",(" bar", true))

Notice that it succeeds, but only returns "foo". "bar" is left in the re-
mainder. This makes sense because word doesn’t know anything about
spaces.

> word (prepare " foo bar");;
val it : Outcome<string> = Failure

This also looks good. There are words in the string, but the string
starts with a space. Again, word doesn’t know anything about spaces so
it fails.

How about words that start with an uppercase letter?

<upperword> ::= <upperletter> (<letter>)*

Again, this is EBNF. The * operator means “zero or more”. So an up-
percase word must be at least one uppercase letter followed by zero or
more letters of any case. Unrolled into regular BNF:

<upperword> ::= <upperletter> <word>
| <upperletter>

As before, thinking about this recursively is a useful exercise, but we
have a parser that makes our lives easier. pmany0 parses zero or more
occurrences of a parser. How do we parse first an uppercase letter and
then zero or more letters of any case? Anytime your parsing logic is of
the form “first do this then do that” you're talking about sequences.

let upperword = pseq pupper (pmanyO pletter)

As before, we want to get back a string, but what this gives us back
is kind of a mess. pmany0 pletter returns a char list, pseq returnsa
tuple, and pupper returns a char, so what we getisa char * char list.
Fortunately, pseq also expects a function that lets us sort it all out. We
want a string.

> let upperword = pseq pupper (pmanyO pletter) (fun (x,xs) -> stringify (x::xs));;

val upperword : Parser<string>

Now it does what we want!
OK, where are we? We can parse uppercase words and other words.
What is the form of a sentence? From our BNF above, it really has

232

two pieces. Let’s switch from working bottom-up to working top-down.
Hopefully we can meet in the middle somewhere.

<sentence> ::= <upperword> (<ws> <word>)* <period>

There’s a prefix, which is the first uppercase word and a middle part,
which is spaces and words. Then there’s a suffix, which is the period.
When you have a complicated production rule, thinking in terms of pre-
fixes and suffixes helps a lot. Note that we could have divided this in
many different ways. Let’s make a top-level sentence parser with these
parts and then flesh each piece out.

let sentence = pleft prefix period

pleft applies two parsers but only returns the result of the one on
the left. So sentence just returns the result of prefix, which makes
sense because we don't actually care about putting a period in our list
of words.

prefix also has two parts: an uppercase word and then zero or more
whitespace-separated words.

let prefix = pseq upperword wordsO (fun (w,ws) -> w::ws)

We are calling “zero or more whitespace-separated words,” wordso0.
OK, so clearly upperword returns a string. And hopefully, we can build
wordsO so that it returns a string list. If that’s what we're getting
back, then combining them should be simple: just cons the uppercase
word to the list of words from words0. Fortunately, pseq wants a func-
tion that asks us how to combine its two pieces, so we tell it to combine
using cons.

Let’s define words0 now. So we want zero or more words prefixed by
whitespace.

let wordsO = pmanyO (pright pwsl word)

pright is like pleft except that it returns the result from the parser
on the right, in this case, a word. Without any more work, this already
does what we want, see?

> let wordsO = pmany0O (pright pwsl word);;
val wordsO : (Input -> Outcome<string list>)

which, of course, is a Parser<string list>.
We’re almost done! We just have to define a top-level parser now.

PARSER COMBINATORS 233

Out of habit, I always call this top-level parser grammar. grammar really
only does one thing: it calls our parser and makes sure that we’ve parsed
all of the input. Remember that many parsers (like word) will happily
nibble off only a part of the input and leave the rest behind. To ensure
that all the input is consumed, we make sure that the only thing left is
EOF.

let grammar = pleft sentence peof

Since we don't really care what peof returns—just that it’s successful—
we use pleft with our sentence parser.

Here is the complete program along with a little main function so that
you can try it out using dotnet run.

open Combinator
let period = (pchar '.')

let word = pfun (pmanyl pletter) (fun cs -> stringify cs)
let upperword = pseq pupper (pmanyO pletter) (fun (x,xs) -> stringify (x::xs))

let wordsO = pmanyO (pright pwsl word)
let prefix = pseq upperword wordsO (fun (w,ws) -> w::ws)

let sentence = pleft prefix period

let grammar = pleft sentence peof

let parse input : string list option =
match grammar (prepare input) with
| Success(ws,_) -> Some ws

| Failure(_,_) -> None

[<EntryPoint>]
let main argv =
if argv.Length <> 1 then
printfn "Usage: dotnet run <sentence>"
exit 1
match parse argv.[0] with
| Some ws -> printfn "Sentence: %A" ws
| None -> printfn "Invalid sentence."
0

The parsers I describe above are available in a module called Combinator.fs
which is available on the course website.
Let’s run our program.

$ dotnet run "This is a sentence."
Sentence: ["This"; "is"; "a"; "sentence"]

234

Debugging parsers

While you can go around sticking printfn statements into your combi-
nator code when things don’t go as planned, there’s a much better way
to debug: the debug parser, <!>. Here’s a version of the same program
but this time decorated with debug parsers.

open Combinator

let period = (pchar '.') <!> "period"

let word = pfun (pmanyl pletter) (fun cs -> stringify cs) <!> "word"

let upperword = pseq pupper (pmanyO pletter) (fun (x,xs) -> stringify (x::xs)) <!> "upperword"
let wordsO

pmany0 (pright pwsl word) <!> "wordsO"
let prefix = pseq upperword wordsO (fun (w,ws) -> w::ws) <!> "sprefix"
let sentence = pleft prefix period <!> "sentence"

let grammar = pleft sentence peof <!> "grammar"

let parse input : string list option =
match grammar (debug input) with
| Success(ws,_) -> Some ws

| Failure(_,_) -> None

[<EntryPoint>]
let main argv =
if argv.Length <> 1 then
printfn "Usage: dotnet run <sentence>"
exit 1
match parse argv.[0] with
| Some ws -> printfn "Sentence: %A" ws
| None -> printfn "Invalid sentence."
0

Observe that we changed prepare input in our main method to debug
input. The difference is that debug sets an internal debugging flag to
true whereas prepare sets it to false. The two functions are otherwise
the same. When a debug parser, always written like <!> "rule", en-
counters a debugging flag set to true, it prints diagnostic information,
including rule, to the terminal.

Let’s run this program.

PARSER COMBINATORS 235

$ dotnet run "This is a sentence."

[attempting: grammar on "This is a sentence.", next char: 0x54]

[attempting: sentence on "This is a sentence.", next char: 0x54]

[attempting: sprefix on "This is a sentence.", next char: 0x54]

[attempting: upperword on "This is a sentence.", next char: 0x54]

[success: upperword, consumed: "This", remaining: " is a sentence.", next char: 0x20]
[attempting: wordsO on "This is a sentence.", next char: 0x54]

[attempting: word on "This is a sentence.", next char: 0x54]

[success: word, consumed: "is", remaining: " a sentence.", next char: 0x20]
[attempting: word on "This is a sentence.", next char: 0x54]

[success: word, consumed: "a", remaining: " sentence.", next char: 0x20]
[attempting: word on "This is a sentence.", next char: 0x54]

[success: word, consumed: "sentence", remaining: ".", next char: Ox2e]

[success: wordsO, consumed: " is a sentence", remaining: ".", next char: 0x2e]
[success: sprefix, consumed: "This is a sentence", remaining: ".", next char: 0x2e]
[attempting: period on "This is a sentence.", next char: 0x54]

[success: period, consumed: ".", remaining: "", next char: EOF]

[success: sentence, consumed: "This is a sentence.", remaining: "", next char: EQOF]
[success: grammar, consumed: "This is a sentence.", remaining: "", next char: EOF]
Sentence: ["This"; "is"; "a"; "sentence"]

With this latter version, when things go wrong, we can see why.

$ dotnet run "This is a sentence"

[attempting: grammar on "This is a sentence", next char: 0x54]

[attempting: sentence on "This is a sentence", next char: 0x54]

[attempting: sprefix on "This is a sentence", next char: 0x54]

[attempting: upperword on "This is a sentence", next char: 0x54]

[success: upperword, consumed: "This", remaining: " is a sentence", next char: 0x20]
[attempting: wordsO on "This is a sentence", next char: 0x54]

[attempting: word on "This is a sentence", next char: 0x54]

[success: word, consumed: "is", remaining: " a sentence", next char: 0x20]

[attempting: word on "This is a sentence", next char: 0x54]

[success: word, consumed: "a", remaining: " sentence", next char: 0x20]

[attempting: word on "This is a sentence", next char: 0x54]

[success: word, consumed: "sentence", remaining: "", next char: EOF]

[success: wordsO, consumed: " is a sentence", remaining: "", next char: EQOF]

[success: sprefix, consumed: "This is a sentence", remaining: "", next char: EOF]
[attempting: period on "This is a sentence", next char: EQF]

[failure at pos 18 in rule [pchar '.']: period, remaining input: "", next char: EOF]
[failure at pos 18 in rule [pchar '.']: sentence, remaining input: "", next char: EOF]
[failure at pos 18 in rule [pchar '.']: grammar, remaining input: "", next char: EOF]

Invalid sentence.

236

Oops! It looks like we forgot the period.

Performance

One thing you may notice while playing with combinators is that the
performance is not always stellar. There are a few reasons.

First, this library is not optimized in any way. It’s designed as a teach-
ing tool. If you want a commercial-grade combinator parsing library,
you should look elsewhere. FParsec®
that I use a lot.

Second, backtracking parsers are expensive, because when they fail,

is a good, open-source library

other alternatives are explored. For example, if you peek at the imle-
mentation for the choice combinator, <|>, you will see that it does just
that. When producing a commercial-grade parser, you will want to in-
vest some time in optimizing your code. These optimizations are largely
outside the scope of this class.

Finally, there is a cost to using higher-order functions, although the
F# compiler does do a respectable job about optimizing away obvious
inefficiencies. Still, hand-written parsers, not using parser libraries like
combinators, will always be faster, especially in languages like C. Con-
sequently, some of the fastest parsers are written in C. This is some-
times essential in domains where performance is critical, as in code for
network protocols.

Parsing theory is good, but hard to apply in practice

Before I go, I want to revisit my comments about parsing theory. As I
stated before, there is a ton of research on parsing. In fact, some parsers
can be generated automatically using tools called parser generators. These
generated parsers can even be blazingly fast because they can be de-
signed to emit C code that is basically one big switch statement. This is
called a table-driven parser. The chief difficulty with using a parser gen-
erator, however, is that you need to know the formal grammar class of
your language. Is your language “deterministic context-free?” Great!
Use an LR parser. Is it a regular language? Great! Use regular expres-
sions.

In practice, it is often difficult to know for sure what class your lan-
guage belongs to until you try to generate a parser. And even though

¥ http://www.quanttec.com/fparsec/

http://www.quanttec.com/fparsec/
http://www.quanttec.com/fparsec/

we can generate parsers, this does not mean that it is “no work” to gen-
erate the specification for the parser generator. In my experience, you
are often deep into a parser design when you stumble across a syntatic
construct that cannot be parsed using an LR parser. Oh crap! Now
what?! Change your syntax or throw out the entire spec and start over
again with another parser generator? People who do this more often
than I do probably have a better intuition for which parser generators
are good for which jobs. It suffices to say that when I discovered com-
binators, I entirely stopped using parser generators and never looked
back.

Anyway, the fact that the “best” (or really, “best known”) parsing
algorithm can be chosen based on the grammar class of your language
is why theoretical computer scientists call parsing a “solved problem.”
Like many other things in computer science, though, the proof is in the
pudding.

PARSER COMBINATORS 237

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C
	Anything else?

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	Proof by Reduction
	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

