
Grammars and Parse Trees

Excerpt from Mitchell’s “Concepts in Programming Languages,” pp. 52–57

Figure 14: You might be intimidated by
the use of the word formal in mathemat-
ics and computer science. You should
not be. A formal tool is one that you can
use as long as the “shape” of the prob-
lem fits the “mold” of the tool. I like to
think of the baby toy shown above. The
only trick to using a formal tool is to
learn to recognize when the shape “fits.”

A parser is a program that converts a sequence of characters into a data
structure called a parse tree. Parse trees represent the structure of a pro-
gramming language in a form that is easy to analyze and interpret on a
computer. In order to perform this conversion, we need a way of speci-
fying how a language “looks.” We call the “look” or surface appearance
of a language its syntax, and to specify a syntax, we rely on a tool from
formal language theory (see Figure 14) called a grammar. A grammar is
simply a methodical description of a syntax. It is a fundamental tool in a
language designer’s toolbox. [–ed.]

Grammars
Grammars provide a convenient method for defining infinite sets of ex-
pressions. In addition, the structure imposed by a grammar gives us a
systematic way of processing expressions.

A grammar consists of a start symbol, a set of nonterminals, a set of
terminals, and a set of productions. The nonterminals are symbols that
are used to write out the grammar, and the terminals are symbols that
appear in the language generated by the grammar. . . .Here we use a . . .
compact notation, commonly referred to as BNF.12 12 Backus-Naur Form, named after its

inventors, John Backus and Peter Naur,
who first used it to describe the influ-
ential (if not widely used) ALGOL
programming language. Interestingly,
the same idea may have been indepen-
dently invented nearly 25 centuries ago
by the scholar, Pāṇini, who used it to
describe Sanskrit. [–ed.]

The main ideas are illustrated by example. A simple language of nu-
meric expressions is defined by the following grammar:13

13 Note that ::= means “is defined as”
and | means “alternatively.”

<e> ::= <n> | <e> + <e> | <e> - <e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

where <e> is the start symbol, symbols <e>, <n>, and <d> are nonter-
minals, and 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, and - are the terminals. The
language defined by this grammar consists of all the sequences of ter-
minals that we can produce by starting with the start symbol <e> and



78

by replacing nonterminals according to the preceding productions. For
example, the first preceding production means that we can replace an
occurrence of <e> with the symbol <n>, the three symbols <e> + <e>,
or the three symbols <e> - <e>. The process can be repeated with any
of the preceding three lines.

Some expressions in the language given by this grammar are
0
1 + 3 + 5
2 + 4 – 6 - 8

Sequences of symbols that contain nonterminals, such as
<e>
<e> + <e>
<e> + 6 - <e>

are not expressions in the language given by the grammar. The purpose
of nonterminals is to keep track of the form of an expression as it is being
formed. All nonterminals must be replaced with terminals to produce
a well-formed expression of the language.

Derivations
A sequence of replacement steps resulting in a string of terminals is
called a derivation.

Here are two derivations in this grammar, the first given in full and
the second with a few missing steps that can be filled in by the reader
(be sure you understand how!):

<e> → <n> → <n><d> → <d><d> → 2<d> → 25

<e> → <e> - <e> → <e> - <e> + <e> → … → <n> - <n> + <n> → … → 10 - 15 + 12

Parse Trees and Ambiguity
It is often convenient to represent a derivation by a tree. This tree, called
the parse tree of a derivation, or derivation tree, is constructed with the
start symbol as the root of the tree. If a step in the derivation is to replace



GRAMMARS AND PARSE TREES 79

swith x1 , ... ,xn , then the children of s in the tree will be nodes labeled
x1 , ... ,xn.

The parse tree for the derivation of 10 - 15 + 12 in the preceding
subsection has some useful structure. Specifically, because the first step
yields <e> - <e>, the parse tree has the form

<e>

<e> - <e>

<n>

<n><d>

<d>

1

0

<e> + <e>

<n>

<n><d>

<d>

1

5

<n>

<n><d>

<d>

1

2

This tree is different from

<e>

<e> + <e>

<e> - <e>

<n>

<n><d>

<d>

1

0

<n>

<n><d>

<d>

1

5

<n>

<n><d>

<d>

1

2

which is another parse tree for the same expression. An important fact
about parse trees is that each corresponds to a unique parenthesization
of the expression. Specifically, the first tree corresponds to 10 - (15
+ 12) whereas the second corresponds to (10 - 15) + 12. As this ex-
ample illustrates, the value of an expression may depend on how it is
parsed or parenthesized.

A grammar is ambiguous if some expression has more than one parse



80

tree. If every expression has at most one parse tree, the grammar is
unambiguous.

Example 4.1
There is an interesting ambiguity involving if-then-else. This can be
illustrated by the following simple grammar:

<s> ::= <v> := <e> | <s>;<s> | if <b> then <s> | if <b> then <s> else <s>
<v> ::= x | y | z
<e> ::= <v> | 0 | 1 | 2 | 3 | 4
<b> ::= <e>=<e>

where <s> is the start symbol, <s>, <v>, <e>, and <b> are nonterminals,
and the other symbols are terminals. The letters <s>, <v>, <e>, and <b>
stand for statement, variable, expression, and Boolean test, respectively.
We call the expressions of the language generated by this grammar state-
ments.

Here is an example of a well-formed statement and one of its parse
trees:

x := 1; y := 2; if x=y then y := 3

<s>

<s> ; <s>

<v> := <e>

x 1

<s> ; <s>

<v> := <e>

y 2

if <b> then <s>

<e> = <e>

<v>

x

<v>

y

<v> := <e>

y 3

This statement also has another parse tree, whichweobtain byputting
two assignments to the left of the root and the if-then statement to the
right. However, the difference between these two parse trees will not
affect the behavior of code generated by an ordinary compiler. The rea-
son is that it is normally compiled to the code for s1 followed by the



GRAMMARS AND PARSE TREES 81

code for s2. As a result, the same code would be generated whether we
consider s1;s2:s3 as (s1;s2);s3 or s1;(s2;s3).

Amore complicated situation arises when if-then is combinedwith
if-then-else in the following way:

if b1 then if b2 then s1 else s2

What should happen if b1 is true and b2 is false? Should s2 be ex-
ecuted or not? As you can see, this depends on how the statement is
parsed. A grammar that allows this combination of conditionals is am-
biguous, with two possible meanings for statements of this form.

Parsing and Precedence
Parsing is the process of constructing parse trees for sequences of sym-
bols. Suppose we define a language L by writing out a grammar G.
Then, given a sequence of symbols s, we would like to determine if s is
in the language L. If so, then we would like to compile or interpret s,
and for this purpose we would like to find a parse tree for s. An algo-
rithm that decides whether s is in L, and constructs a parse tree if it is,
is called a parsing algorithm for G.

There aremanymethods for building parsing algorithms from gram-
mars. Many of these work for only particular forms of grammars. Be-
cause parsing is an important part of compilingprogramming languages,
parsing is usually covered in courses and textbooks on compilers. For
most programming languages you might consider, it is either straight-
forward to parse the language or there are some changes in syntax that
do not change the structure of the language very much but make it pos-
sible to parse the language efficiently.

Two issues we consider briefly are the syntactic conventions of prece-
dence and right or left associativity. These are illustrated briefly in the
following example.

Example 4.2
Aprogramming languagedesignermight decide that expressions should
include addition, subtraction, and multiplication and write the follow-
ing grammar:

<e> ::= 0 | 1 | <e> + <e> | <e> - <e> | <e> * <e>



82

This grammar is ambiguous, as many expressions have more than
one parse tree. For expressions such as 1 - 1 + 1, the value of the ex-
pression will depend on the way it is parsed. One solution to this prob-
lem is to require complete parenthesization. In other words, we could
change the grammar to

e ::= 0 | 1 | (<e> + <e>) | (<e> - <e>) | (<e> * <e>)

so that it is no longer ambiguous. However, as you know, it can be awk-
ward to write a lot of parentheses. In addition, for many expressions,
such as 1 + 2 + 3 + 4, the value of the expression does not depend
on the way it is parsed. Therefore, it is unnecessarily cumbersome to
require parentheses for every operation.

The standard solution to this problem is to adopt parsing conven-
tions that specify a single parse tree for every expression. These are
called precedence and associativity. For this specific grammar, a natural
precedence convention is that multiplication has a higher precedence
than addition (+) and subtraction (—). We incorporate precedence into
parsing by treating an unparenthesized expression e op1 e ep2 e as
if parentheses are inserted around the operator of higher precedence.
With this rule in effect, the expression 5 * 4 - 3 will be parsed as if
it were written as (5 * 4) - 3. This coincides with the way that most
of us would ordinarily think about the expression 5 * 4 - 3. Because
there is no standard way that most readers would parse 1 + 1 - 1, we
might give addition and subtraction equal precedence. In this case, a
compiler could issue an error message requiring the programmer to
parenthesize 1 + 1 - 1. Alternatively, an expression like this could be
disambiguated by use of an additional convention.

Associativity comes into play when two operators of equal prece-
dence appear next to each other. Under left associativity, an expres-
sion <e> <op1> <e> <op2> <e> would be parsed as (<e> <op1> <e>)
<op2> <e>, if the two operators have equal precedence. If we adopted a
right-associativity convention instead, <e> <op1> <e> <op2> <e>would
be parsed as <e> <op1> (<e> <op2> <e>).

Expression Precedence Left Associativity Right Associativity
5 * 4 - 3 (5 * 4) - 3 no change no change
1 + 1 - 1 no change (1 + 1) - 1 1 + (1 - 1)
2 + 3 - 4 * 5 + 2 2 + 3 - (4 * 5) + 2 ((2 + 3) - (4 * 5)) + 2 2 + (3 - ((4 * 5)) + 2))


	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Normal form
	Reduction order

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial


