
C: A Language Built Around a Memory Model

Unlike Java or Python, C is a language built around the idea of manual
management of computer resources. This means that handling the life-
time of a resource is the programmer’s responsibility. In C, the most
prominent of those resources is memory.

Storage Duration
When declaring variables in C, you need to explicitly think about the
duration of your data: is it short-lived or long-lived?

Local (aka automatic) storage duration is the default, and local mem-
ory used to store data is automatically reclaimed (``deallocated'')
whenever the enclosing scope is popped off the runtime stack. Local
data is therefore “short-lived.”

Allocated data must be explicitly requested and is only deallocated
when deallocation is requested explicitly by the programmer. Allocated
data is therefore “long-lived,” since it persists until it is either manually
deallocated by the programmer or the program terminates.

Requesting local storage
Localmemory is automatically allocatedwhenever a variable is declared.
For example,
int x;

reserves space for an integer.
int x = 23;

actually does two things: 1. it reserves memory (usually on the runtime
stack), and 2. it stores the value 23 in that memory.



52

If our program had the following code:

void foo() {
int x = 23;

}

then x would be automatically deallocated at the end of foo, when foo
returns control to the calling function (whatever that is).

Although C is allowed to store local data in a variety of places, it
is almost always stored directly on the runtime call stack. C programmers
sometimes say that a variable is “on the stack.” What they really mean
is that the variable is “local,” and youwill probably catchme saying this
every now and then. We also sometimes just call them “locals.”

Requesting allocated storage
Allocated memory is manually managed. For example,

int *x = malloc(sizeof(int));

allocates space for an integer. malloc is a standard library function, so
youmust #include <stdlib.h> in order to use it. malloc takes the size
of the data type, in bytes, as its sole argument, and it returns a pointer
(i.e., an address) to that memory.

Although C is allowed to store allocated data in a variety of places,
it is almost always stored in the heap. What is “the heap”? Think of it as
whatever memory is not being actively used by the program to manage
itself. For example, the call stack is used to manage the execution of
functions, so the stack is not the heap. C programmers sometimes say
that a variable with allocated duration is “on the heap,” and you will
probably hear me say this as well. What they really mean is that a local
variable stores a pointer to heap storage.

Look at the last code example again. There are actually two alloca-
tions happening. Can you spot them? It’s easier to see if we split the
allocation and the assignment into two pieces, ala

int *x;
x = malloc(sizeof(int));

Here, we first allocate a local variable x (on the stack). x stores a
value of type “pointer to int”. Thenwe ask the operating system, via the
standard library function call malloc, to give us enough memory (on
the heap) to store an int. Finally, we assign the pointer our requested
(heap) memory to x.



C: A LANGUAGE BUILT AROUND A MEMORY MODEL 53

Wait... pointers?
Despite the hype, pointers are actually very simple. It’s their simplicity
that usually trips people up, because you can use their simple features
in complex ways that can get confusing. But really, keep in mind that
they are simple and follow simple rules.

A pointer is just a memory address. That’s almost the entire story.
When working with pointers, you usually want to do one of two

things:

1. Follow a pointer to the data it points to, or

2. Get a pointer to a value.

The first operation, following a pointer to the data it points to, is
called a dereference. This sounds a little frightening, but really, if you
imagine a pointer as being like an address to someone’s house, written
on a slip of paper, dereferencing is just walking down the street to the
addresswhere the house is located. Fortunately for us, inmemory-land,
all values live on one street, with address 0 at the beginning of the street
and address 232 − 1 at the end.

In our malloc example above, you’d find an int living at the address
written on the piece of paper x. And because x got the address for int
from malloc, we know that the address to int is probably somewhere
in the heap.

For example, let’s dereference x and store a value there.

int *x = malloc(sizeof(int));
*x = 3;
printf("%d", *x);



54

The above program will print 3.
The second operation, getting a pointer, is called address of. It does

exactly what it says it does: it gets the address of the thing you’re asking
about. For example,

int *x = malloc(sizeof(int));
*x = 3;
int *y = &(*x);
printf("%d", *y);

What do you think this program will print? It prints 3.

1. On line 1, we allocate memory for an int on the heap and store a
pointer to that memory in x.

2. On line 2, we follow x to its location (i.e., we dereference x) and then
we store 3 in that location.

3. On line 3, we dereference x, obtaining a value stored in the heap, but
then we immediately ask for the value’s address using &. We then
store this address in y, which is a pointer.

4. On line 4, we print the value pointed to by y.

If you are not convinced that x == y, try this:

int *x = malloc(sizeof(int));
*x = 3;
int *y = &(*x);
printf("%p == %p ? %s\n", x, y, x == y ? "yes" : "no");

On my machine, when I run this program, I get output like:

0x7ff124400350 == 0x7ff124400350 ? yes

The confusing part about pointers is that we use * in two contexts:

1. In the type declaration of a variable, e.g.

int *ptr;

2. And when dereferencing a variable, e.g.

int foo = *ptr;

So you need to pay attention to which context you’re in, otherwise
you’ll get it wrong.



C: A LANGUAGE BUILT AROUND A MEMORY MODEL 55

malloc may fail
One important thing to note is that calls to malloc can fail. Why? There
are many reasons that this may occur, but all of them fundamentally
boil down to the fact that sometimes the operating system cannot find
enoughmemory to satisfy your request. When the failure occurs, malloc
returns NULL. You should get into the habit of checking that malloc does
not return NULL.

int *x;
x = malloc(sizeof(int));
if (x == NULL) {

// do some recovery action; sometimes
// the best thing to do is to kill the program,
// returning a "failure" code to the OS.
exit(1);

};

Assuming that your allocation was successful, in order to assign a
value to that memory, we need to dereference the pointer. We dereference
using the * operator. For example, the following dereferences x and
then assigns 23 to the location pointed to by x.

*x = 23;

Returning to our foo function with some small modifications,

void foo() {
int *x = malloc(sizeof(int));
if (x == NULL) {
exit(1);
}
*x = 23;

}

We now have a value (23) in memory (at address x) that behaves
very differently than the local version: when foo ends, and the func-
tion returns control to its caller, the memory pointed to by x remains
allocated.

Why? Because it has “allocated duration” and you did not tell C that
you no longer needed that memory. In fact, we have a little problem
with this particular program: after foo returns, not only can we not ac-
cess the value 23 (x, the pointer, is local to foo), the pointer value is
effectively gonewhen the function returns. We’ve lost the address. With-
out the address, we can’t tell C to deallocate the int stored at x!

This kind of programmingmistake has a name in C: it’s called amem-
ory leak. Memory leaks are an easy mistake to make in C. If you leak



56

enough memory, eventually your program runs out of it, malloc will
eventually return NULL, and at that point, your program is toast.

Fortunately, the fix for this program is simple: Use free.
Like malloc, free is also a standard library function.

void foo() {
int *x = malloc(sizeof(int));
if (x == NULL) {
exit(1);
}
*x = 23;
free(x);

}

Now foo doesn’t suffer from the memory leak. Of course, foo has
other problems, like... it doesn’t actually do anything... but that’s OK
for now ;)

It’s not always easy to know when to free memory, and so most
memory leaks are not simple ones like the one I showed you above. Still,
if you keep in mind the rule that “every malloc should be accompanied
by a free”, you’ll be off to a good start.

When should I use allocated storage?
You might be thinking: “All this manual memory management sounds
like a lot of work! Do I really need to use it?” Trust me, I thought exactly
the same thing the first time I heard about this, too. The short answer is
yes, you have to use it.

One of the big advantages of languages like Java or Python over C is
the fact that all memory management is automatic. In fact, automatic
memory management techniques were already known when C was in-
vented. So why did C’s inventors make it manual? There are at least
two reasons:
1. Manual memorymanagement is a feature in C. Remember that C was

written with UNIX in mind: the designers of UNIX needed direct
access to memory because an operating system needs to be able to
speak directly to hardware. Code that manages the interaction be-
tween hardware and an operating system is called a device driver.
Knowing exactly when to automatically reclaim memory is tricky in
the context of device drivers.

2. Manual memory management can be more efficient than automatic
memory management. It should be noted, though, that while this is



C: A LANGUAGE BUILT AROUND A MEMORY MODEL 57

indeed a true statement, the performance penalty for using automatic
memory management in a modern language on a modern computer
is often negligible, and not worth the pain of manual management.
When C was invented in the early 1970’s, with much slower comput-
ers, manual memory management was a better value.

Getting back to the question, “when should I use it?”, the short an-
swer is: whenever a value needs to outlive the scope in which it was
created. That sounds a little cryptic, so here’s a concrete example:

Figure 4: A call stack with zero_fill as
the active subroutine.

??? zero_fill(int length) {
// create an array of length n, filled with zeros
...
...
...
return ???;

}

I want a function that allocates an array of length n, fills the arraywith
0s, and returns it. Notice that I left the return type and value unspecified
(???). So what’s wrong with this version?

Figure 5: arr is allocated inside
zero_fill’s stack frame.

int[] zero_fill(int length) {
int arr[length];
for (int i = 0; i < length; i++) {
arr[i] = 0;

}
return arr;

}

Well, aside from the fact that it does not compile (int[] is not a valid
return type), the problem is that we just allocated arr in memory local
to zero_fill.

Figure 6: If zero_fill returns a copy
of arr to main, it might not fit in main’s
stack frame.

More importantly, howwould this work? Assuming that the compiler
accepted the above, how might we imagine this working?

Let’s say that main calls zero_fill so that zero_fill is the subrou-
tine at the top of the stack (Fig. 4).

Since arr is declared as an automatic variable, the entire array is al-
located on the stack, in the stack frame for zero_fill (Fig. 5). This is
part of what we mean when we say that arr is local to zero_fill.

zero_fill is supposed to return arr to main. How might we return
it?

Let’s say that we return a copy of arr. Now we have a problem: only
zero_fill knows how big that array is going to be. Dowe have enough
space in main to store the copy? Probably not! (Fig 6)



58

Even if we insist that we want it to work this way, is this really what
we want? We already did the work of creating arr. Are we really going
to make a copy of it? What if arr has a million elements? Copying it
might take a long time.

The alternative approach is that we don’t copy arr. Instead, we return
the address of arr. In other words, we return a pointer to arr.

int* zero_fill(int length) {
int arr[length];
for (int i = 0; i < length; i++) {
arr[i] = 0;

}
return arr;

}

This is a much better arrangement, and indeed, this program even
compiles. It solves two of our problems: a pointer is small (e.g., 4 bytes)
and we know exactly how big it will be ahead of time, so we can copy it
back into main quickly.

But there is another nasty problem. What does ptr_to_arr in main
point to? It points to memory local to zero_fill.

Figure 7: Pointers to deallocated mem-
ory are a bad idea.

When zero_fill returns, C reclaims zero_fill’s memory by pop-
ping it off the stack. If we dereference ptr_to_arr after zero_fill re-
turns, just about anything could happen because that memory is free
for the application to use for other purposes (Fig. 7).

C, by the way, will happily let you write this program. A good com-
piler (like clang) will warn you, but it is perfectly valid C. Worse, it
might even work for you when you test it. But this problem is seri-
ous enough that it has a name: it is called a dangling pointer. In this
case, dereferencing this dangling pointerwill usememory that has been
“freed” by the call stack; therefore, this bug is called a use-after-free bug.

To get around this bug, we need to use memory with allocated dura-
tion. In otherwords, we need to use the heap. Here is a correct program:

int* zero_fill(int length) {
int *arr = malloc(length * sizeof(int));
for (int i = 0; i < length; i++) {
arr[i] = 0;

}
return arr;

}

Note that I’ve omitted the NULL checks after malloc for clarity, but for
completeness, you really should check.

Nowwe’ve allocated an array on the heap. arr is still a local variable,
but it points to memory on the heap:



C: A LANGUAGE BUILT AROUND A MEMORY MODEL 59

Figure 8: Totally cool use of memory.

Whenwe return arr, C copies the value of arr (an address) intowhat-
ever local variable we’ve decided to put the return value in main (e.g.,
ptr_to_arr). When zero_fill is popped off the call stack, deallocating
the local arr, our program is unaffected by the deallocation (Fig. 9).

The gotchawith allocated duration storage is that we need to remem-
ber to free ptr_to_arr, otherwisewe leakmemory andmay eventually
run out of memory.

int main() {
int *ptr_to_arr = zero_fill(2000);
// ... do other things ...
free(ptr_to_arr); // we remember to free!

}



60

Figure 9: Everything is still totally cool.


	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C
	Anything else?

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	Proof by Reduction
	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial


