Introduction to the Lambda Calculus, Part 2

In our second reading on the lambda calculus, we finish up discussing
syntax and move on to the semantics of the language.

Ambiguity

In part 1, we looked at an expression Ax . xx and asked what its derivation
tree should look like. Should it look like the tree in Figure 15 or the tree
in Figure 16?

I told you that, because abstraction is right-associative, the correct in-
terpretation is the tree shown in Figure 15.

But what if you wanted to encode the second tree as a lambda pro-
gram? Unless you write your program as separate pieces, such as

a is Ax.x
and
b is x
such that the whole program is
ab

then there does not appear to be a way to encode the second tree using
the syntax we are given. Adding parentheses to the language solves this
problem.

Parentheses

Parentheses remove ambiguity. Let’s start by introducing a simple ax-
iom into our system:

[(<expression>)] = <expression>

This axiom says that “the meaning of” (the part inside the [| sym-
bols) any expression enclosed in parentheses “is identical to” (=) that
same expression without parentheses. With this rule, you can feel free

<expression>

|

<abstraction>

<variable> <expression>

| |

x <application>

<variable> <variable>

x X
Figure 15: Correct derivation of the
expression Ax.xx.

<expression>

}

<application>

<variable>

|

<variable> <expression> x

| !

x <variable>

|

x

<abstraction>

Figure 16: Incorrect derivation of the
expression Ax.xx.

84

to surround an expression with parens. When an expression would not
be made ambiguous by doing so, you can also remove them.
Let’s augment our grammar so that we don’t run into any more am-

biguity traps.
<expression> ::= <variable>
| <abstraction>
| <application>
| <parens>
<variable> 1= X
<abstraction> ::= A<variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)

Now we can avoid the problem with Ax.xx. If we write Ax.xx, the
interpretation, because abstraction is right associative, is:

<expression>

!

<abstraction>

<variable> <expression>

| |

x <application>

<variable> <variable>

| |

X X

and if we write (Ax.x)x then the interpretation is

<expression>

}

<application>

<abstraction> <variable>

|

<variable> <expression> x

| |

* <variable>

|

X

It is conventional, among people who use the lambda calculus, to
drop parenthesis whenever an interpretation is unambiguous. Googling
for lambda expressions will often turn up scads of examples that omit
parens. When you are aware of this fact, many of these examples will
be easier to interpret.

Other extensions

Additional variables—in other words, not limiting ourselves to just the
variable x—makes the grammar easier to work with. Here is our gram-
mar augmented with additional variables:

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 85

<expression> ::= <variable>

| <abstraction>

| <application>

| <parens>
<variable> ri=a €{a...z}
<abstraction> ::= A<variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)

where, hopefully, it is clear that o € { a ... z } denotes any letter. E.g.,
any letter could be x, or y, or b, or g, etc.

Finally, to make the lambda calculus more immediately useful, let’s
add one more rule, <arithmetic>. Note that this rule is not strictly re-
quired, because although it may not be apparent to you, arithmetic can
be encoded using all of the pieces we've already discussed. But learning
those encodings can be difficult and they are not required to understand
the lambda calculus, so we will put them off until later.

An example of arithmetic of the kind we’re talking about might be an
expression like 1 + 1. The expression 1 + 1 isin infix form, because the
operator (+) is in between the operands (1 and 1). You are accustomed
to infix notation because of years of practice, but from a computational
standpoint, it is a little bit of a hassle to work with. Instead, we will write
all arithmetic in prefix form, which is easier to manipulate programmat-
ically. In prefix form,

e The entire expression is enclosed within parentheses.
e The operator is the first term written inside the parentheses.

e All subsequent terms written after the operator, but still within the
parentheses, are operands.

Formally,
<arithmetic> ::= (<op> <expression> ... <expression>)

For example, 1 + 1is written as (+ 1 1). Another example is ¢ =+
z, which is written (+ ¢ z).

What is <op>? A simple formulation might include just +, -, x, and
+. I'will stick to + and - in this class.

One nice thing about prefix form, which is why we're using it here,
is that the order of operations is very clear. For example, with a lit-
tle practice, you should have no difficulty computing (+ 3 (x 5 4)).
Recall that the equivalent expression in “normal” arithmetic might be
writtenas 3 + 5 * 4, which is ambiguous if you don’t remember your
precedence and associativity rules from algebra class.

Here’s an updated grammar.

86

<expression> ::= <value>

| <abstraction>

| <application>

| <parens>

| <arithmetic>
<value> i:=v € N

| <variable>
<variable> iit=a €{a.z?’
<abstraction> ::= A<variable>.<expression>
<application> ::= <expression><expression>
<parens> ::= (<expression>)
<arithmetic> ::= (<op> <expression> ... <expression>)

<op> o e{+, -3%

Finally, notice that I added one more component, called <value>.
What is <value>? In this language, <value> is either a number or an
<variable>.

You can see why I don’t introduce these complications all up front:
the grammar is starting to look a little hairy. Still, if you remember that
there are essentially three parts to the lambda calculus, variables, abstrac-
tions, and applications, you will be fine. To recap, we added:

1. Parentheses to remove ambiguity.
2. Extra variables.

3. Simple arithmetic in prefix form.

Abstract syntax

One of the tasks newcomers to the lambda calculus most struggle with

is identifying parts of an expression. Before we talk about what the

lambda calculus means, let’s expand on our parsing skills. Given a

grammar and and expression, by now you can probably give me a deriva-
tion tree for that expression, or you can tell me that the expression is not

a valid sentence in the language defined by the grammar. However, al-

though derivation trees are useful, they are also cumbersome. They fo-

cus more on how an expression is derived and less on what a sentence means.

Although the two are clearly related in some ways, sometimes we really

just want to understand an expression’s meaning.

When we want to understand the meaning of a sentence, we usually
turn to an alternative kind of parse tree called an abstract syntax tree or
AST. Abstract syntax makes the meaning of an expression quite clear.
The term abstract means that we no longer care about all the details of
a language’s syntax; instead, we focus on the most important content.

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2

Typically, the content we care about is data and operations. In an AST,
interior nodes are operations and leaf nodes are data.

As an example, let’s revisit the simple calculator grammar shown in
one of our previous readings.

<e> ::=0 | 1] (e> + <e>) | (ke> - <e>) | (e> * <e>)

Suppose we have the expression ((1 + (1 * 0)) - 1). It has the
following derivation:

<e>

/N
<e> - <e>
SN
<e> + <e> 1

[/N
1 <e> *x <e>

| |

1 0

Instead of filling our tree with <e>, let’s define our tree purely in
terms of our three operations, +, -, and *, and our two number liter-
als, 0 and 1. If you need a little more precision than this, imagine we're
using the following type definition from ML.

type Expr =
| Zero
One
Addition of Expr * Expr
Subtraction of Expr * Expr

I
I
I
| Multiplication of Expr * Expr

The top level operation in our derivation is subtraction, so our new

N

The expression on the left of the subtraction is addition, and the ex-

tree will start like this:

pression on the right of the subtraction is 1.
+ 1

87

88

The expression on the left of the addition is 1, and the expression on
the right of the addition is multiplication.

+/_\1
1/ *
I\

The expression on the left of the multiplication is 1, and the expres-
sion on the right of the multiplication is 0.

+/_\1
1/ *
1/ \o

Observe that the meaning of this expression is much clearer. As
noted before, all of the data is at the leaves and all of the operations
are in the interior.

A big reason why we like ASTs is that they suggest a natural pro-
cedure for evaluating an expression: any operator whose operands are
data can be evaluated. See if you can evaluate the tree above from the
“bottom up.” 1 Since you already know how to perform arithmetic, I
hope you'll see that ASTs provide additional clarity about what to do
with an expression. As you shall see, we will rely on ASTs to aid our
understanding of the meaning of lambda calculus expressions.

Semantics of the Lambda Calculus

Semantics is the study of meaning. In the context of programming lan-
guages, what we usually care about is how an expression can be con-
verted into a sequence of mechanical steps that can be performed by a
machine.
So how do we interpret the meaning of a lambda expression?
Unfortunately, the meaning of the word “interpret” is unclear. There
are two meanings for the word “interpret”:

1. To understand.

2. To evaluate.

4 Hint: the only operation whose
operands are data is *. After evaluating
*, redraw the tree, replacing the *
subtree with the result.

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 89

In programming languages, and more generally in computer science,
we tend to favor the latter definition of the word “interpret,” i.e., to
evaluate. Why? Because evaluation is a process that we can carry out

on a machine.!® In a well-designed programming language, there is 1> Maybe someday our study of artificial
intelligence will allow computers to

. . . “understand” things, but we’re not
apart from natural languages. It is why we can precisely describe pro- there yet. Part of the difficulty may

no room for ambiguity. Precision is what sets programming languages

grams and run them billions of times without error. But it also means, be that we don't really know what
. “understanding” itself .
because they are so different from natural languages, that they are usu- rndersianding feel means

ally harder to learn.

Evaluation via term rewriting

The lambda calculus is an example of a term rewriting system. You've
seen a term rewriting system before. The system of mathematics you
learned in high school—algebra—is a term rewriting system. The big
idea behind term rewriting systems is that, by following simple substi-
tution rules, you can “solve” the system. In algebra, we mix term rewrit-
ing (substitution) and arithmetic (e.g., 1 + 2) to solve for the value of
a variable.

The amazing and surprising fact about the lambda calculus is that
term rewriting is sufficient to compute anything. Yes, really, all you need
to do is follow a few simple rewriting rules, just like in algebra, and you
don’t even need the arithmetical part.

That said, if you intend to compute “interesting” things—the kinds
of programs we normally write—the language is inconvenient to work
with. Although it is not as primitive as a Turing machine, it’s pretty
darned primitive. Alonzo Church’s contribution was to show that the
functions we most care about—the ones that are computable in principle—
can all be written as lambda expressions. In this class, I prefer that you
not have to work at such a primitive level, and so our version of the
lambda calculus has “first class” support for arithmetic (<arithmetic>).
Without it, writing useful programs requires a lot of work, but this one
simple extension makes the language useful without sacrificing much
of its simplicity.

There are essentially two rewriting rules in the lambda calculus. To
understand them, I need to introduce few things first: equivalence and
bound/free variables.

Equivalence

In the lambda calculus, we say that two expressions are equivalent when
they are lexically identical. In other words, when they have exactly the
same string of characters. For example, the expressions Ax.x and Ay.y
mean the same thing, but they are not equivalent because they literally
have different letters in them. Ax.x and Ax.x are equivalent, however,

90

because they are exactly the same.

We often talk a little informally about equivalence and you might
hear someone say that Ax.x and Ay .y “are equivalent.” What they mean
is that, after rewriting, the two expressions can be made equivalent.

Bound and free variables

Depending on where a variable appears in a lambda expression, it is
either bound or free.

What is a bound variable? A bound variable is a variable named in a
lambda abstraction. For example, in the expression

Ax.<expression>

where <expression> denotes some expression (that I don’t care about
at the moment), and where x is the bound variable. How do we know
that x is bound? Well, that’s precisely what a lambda abstraction means.
You can read the expression Ax.<expression> literally as saying “the
variable x is bound in expression <expression>.”

x is a variable, and when x is used inside of <expression>, its value
takes on whatever value is given when the lambda abstraction is eval-
uated. Lambda abstractions are the precise mathematical meaning of
what we're talking about when we define a function in a conventional
programming language. To give you an analogy in a language with
which you might be more familiar (Python), you can informally think
of the above expression to mean almost exactly the same thing as the
following program

def foo(x):

<expression>

except that in the lambda calculus, functions don’t have names (i.e., no
foo0).

Now it should make sense to you when I say that x is a bound vari-
able. When we call foo, for example, foo(3), we know that wherever
we see x in the function body, we should substitute in the value 3. Let’s
say we have the Python program:

plus_one (x):

return x + 1
Then the expression
plus_one(3)

means

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 91

Until we actually call the function, x could pretty much be anything;
it's just a parameter. Its value is tied to the calling of the function.
Back to the lambda calculus. In the following expression,

AX.X

all instances of x refer to the same value. How do we know? Because
the lambda abstraction tells us that the value of any x within its scope
(remember: abstraction is right-associative) is bound to the value of the
parameter x.

What about the following expression?

AX.Y

The lambda abstraction tells us that x is bound but it says nothing
about y. In fact, we can't really make any assumptions about y. There-
fore, we call y a free variable.

To understand alambda expression, you must always determine whether
every variable is bound or free. Be careful! Consider the following ex-
pression:

AX.AY . Xy

Both x and y are bound. Why? Let’s rewrite using parens. Let’s start
with the rightmost lambda. We know, because of right-associativity,
that everything to the right of the last period must belong to the right-
most lambda. So,

Ax. Ay . (xy)

We also know that everything to the right of the leftmost period must
belong to the first lambda.

Ax. (Ay. (xy))

Is the rightmost y bound or free? It is bound because it is within the
scope of the Ay.___ abstraction. What about the rightmost x? It is also
bound, because it is within the scope of the Ax.___ abstraction. If you
don't believe me, just look at the outermost parens:

Ax.Coooox L)
Here’s a more complicated example with a free variable:

A\x.x)y

Can you spot which one is free? ©Ls

One more:

92

AX . AX.XX

Which variables are bound?

In this case, all the xes you see are bound. However, there are two
x variables. Let’s put in some parens to make the expression easier to
understand.

Ax. (Ax. (xx))

So both x values are within the scope of both lambda abstractions. To
which abstraction is x bound? In the lambda calculus, the last abstraction
wins. Therefore, it is as if Ax. (Ax. (xx)) were written

Ay. (Ax. (xx))

and to give you an intuitive sense of this, this is more or less equivalent
to the following (perfectly valid but slightly unusual) Python program,

def yfunc(y):
def xfunc(x):
return x(x)

return xfunc

but, of course, without the function names.

Reductions

The rules used to rewrite expressions in the lambda calculus are called
reduction rules. Reductions are the heart of what it means to evaluate, or
more colloquially, “to execute,” a lambda expression.

« Reduction

The first rewriting rule is called alpha reduction. Alpha reduction is a
rule introduced to deal with ambiguity surrounding the use of vari-
ables. Specifically, alpha reduction relies on the property that, in the
lambda calculus, the given name of a bound variable largely does not
matter.

Let’s look at a concrete example. Remember the identity function?

def identity(x):

return x

It returns whatever we give it. Here’s a Python interpreter session:

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 93

$ python
Python 2.7.15 (default, Aug 22 2018, 16:36:18)
[GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.2)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> def identity(x):
return x

>>> identity(3)
3

Hopefully no surprises there, right? What if, after we explored the
above definition of identity, I asked you what the following function
meant:

def identity2(z):

return z

I'suspect that you might be a little annoyed. Why? Because obviously
identityl and identity2 are the same function.

Remember, though, that in the lambda calculus, we have a strict no-
tion of equivalence. Two expressions are equivalent if and only if they
are exactly the same string. So even though identity in the lambda
calculus is:

AX.X

and identity2 in the lambda calculus is:

Ay.y

and we can sort of squint and see that they’re the same, that’s not enough.
We have to prove it.

« Equivalence

The notation [a/b]<expression> means “replace the variable b with
variable a in <expression>.” To perform alpha reduction, we rely on
the following property of the lambda calculus, which is called “alpha
equivalence”:

hxy.€] =0 [Mra.[x2/x1]€]

where z; and z; are variables, and e is an expression.

This property says that the meaning of the expression of the form
Az;.e is the same when you replace it with an expression of the form
Aza.[z2/21]e. The two expressions are “alpha equivalent” (that’s what
=, means). Since [x2/x1] is not a valid lambda-calculus expression, you

94

must continue replacement of z; with z; wherever you find it in e. You
continue doing this until you can proceed no further with substitution.
Here’s a proof that the two expressions are the same.

AX.X given

[y/x] Ax.x | alphareduce x withy

Ay.[y/x]lx | step 1: rename outer x and continue to inner expression
AYy.y step 2: rename inner x

Therefore, Ax.x =, Ay .y.

I mentioned before that sometimes you can “proceed no further with
substitution”. Substitution can be “blocked” by nested lambdas. Recall
the expression from before:

AX . AX.XX

You might be wondering: is this expression equivalent to Ay . Ax.yy?
This is a perfect time to do alpha reduction. Let’s replace x with y.

AX.AX.XX given

[y/x] Ax.Ax.xx | alphareduce x withy

Ay. [y/x] Ax.xx | step 1: rename outer x and continue to inner expression
Ay . AX.XX done (substitution blocked by Ax)

We cannot rename the x inside the inner expression because it is a
different x than the outer x. The inner lambda “redefines” x. Therefore
Ax.Ax.xx is not equivalent to Ay.Ax.yy, at least not using alpha reduc-
tion.

When two expressions can be made equivalent using alpha reduc-
tion, we call them alpha equivalent.

B Reduction

There is one other kind of reduction called beta reduction. Beta reduc-
tion is the beating heart of the lambda calculus because it is, essentially,
what it means to call a function. We refer to calling a lambda function
application.

The simplest possible example uses the identity function:

AX.X
Let’s “call” this function with a value. Say, y.
A\x.x)y

Recall that we use parentheses to make this expression unambiguous.
At a high level. This expression has two parts: left and right. The left
side is Ax.x. The right side is y. How do we know? The parens tell us.

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 95

What is the one grammar rule in the lambda calculus that lets us in-
terpret an expression with a left part and a right part? It’s this rule:

<application> ::= <expression><expression>

Colloquially, we call the left part the function and the right part the
argument. Why? Because those two parts work just like the function
and argument parts you might see in a conventional programming lan-

guage.
(A\x.x)y

works just like

def identity(x):

return x

identity(y)

because we expect to get y back when we call the identity function
with y as an argument!”.

B Equivalence

Beta reduction is a substitution rule that achieves the same effect as call-
ing a function. We again use the substitution operation, [a/b] ¢ which
means “substitute variable b with expression a in the expression ¢”, but
in the case of beta reduction, substitution eliminates both the function
(the lambda abstraction) and its argument.

We rely on the following property, which is called “beta equivalence”:

[(hz1.€)xs] =5 [[2/x1]€]

where z; is a variable, and 3 and e are expressions.

This property says that an expression of the form (Az;.e)z2 has the
same meaning as an expression of the form [z2/z1]e. The two expres-
sions are “beta equivalent” (that’s what =g means). Since [x2/z1] means
“substitute x5 for x; in e” and is not a valid lambda calculus expression,
you must continue replacement until you can proceed no further. As
with alpha reduction, redefinition of a variable inside a lambda “blocks”
substitution.

Example:

(A\x.x)y given

17 The exact Python equivalent to
(Ax.x)y is actually (lambda x: x)(y).
Python will complain that y is not de-
fined if you do not define it somewhere;
the lambda calculus is less strict because
it doesn't really care if y is free. Python
is an eager language, which essentially
means that variables can never be free.

([y/x] x) | p-reduce x with y; step 1: eliminate abstraction and argument

) step 2: replace x with y

y eliminate parens (because <expression> = (<expression>))

96

Let’s look at another example.

(A\x.xx)z given

([z/x] xx) | B-reduce x with z; step 1: eliminate abstraction and argument
(zz) step 2: replace x with z

zz eliminate parens

In the fourth step, we beta reduce inside the application xx because

[z/x]<expression><expression>means ([z/x]<expression>) ([z/x]<expression>).

Reduction order

In the lambda calculus, the order of reductions does not matter.!® You
are already familiar with this idea. Suppose I ask you to evaluate the
polynomial 2z% + y/3, where z = 1 and y = 3. Does it matter which
variable you substitute first? Clearly the answer is no. We could first
substitute « to obtain 2 + y/3 and then y, yielding 2 4+ 1. Or we could
substitute y to obtain 222 + 1 and then z, also yielding 2 + 1. The result
is the same. A term rewriting system whose substitution order does not
matter is confluent.

Likewise, the order of reductions does not matter in the lambda cal-
culus. The lambda calculus is confluent. Let’s look at an example of an
expression where there is a choice about which reduction we can apply.

(Ax.y) ((Aa.aa) (\b.Dbb))

It’s probably hard for you to see where reductions can be applied in
the above expression. Things are greatly clarified by drawing a lambda
expression’s abstract syntax tree. Let’s start by producing a derivation
tree, then converting it into an abstract syntax tree like we did before

with our arithmetic expression.!”

18 This idea is called the Church-Rosser
Theorem.

¥ You will eventually be able to produce
ASTs directly from an expression
without first having to draw a derivation
tree.

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 97

<expr>
|
<app>
/ \
<expr> <expr>
|
<abs> <app>
A<var>. <expr> <expr> <expr>
|
X <var> <abs> <abs>

/N /N

y A<var>. <expr> A<var>. <expr>

a <app> b <app>
/ N\ / N\
<expr> <expr> <expr> <expr>
| | | |
<var> <var> <var> <var>
A N
a a b b

That’s a lot of drawing! Hopefully the AST is simpler and clearer. As
before, we need to define our AST’s operations and data. Suppose we
use the following ML type definition for our tree, where a char is data
and everything else is an operation of some kind.

type Expr =

| Var of char

| Abs of char * Expr
| App of Expr * Expr

Applying the above definition to our expression, we obtain the fol-
lowing AST

98

Ab / pp\A
/> Ab/ \Ab
I A A

/NN

Var Var Var Var

Much clearer, right? As you will see, I like to write lambda ASTs with
a shorthand that makes them even easier to jot down. Everywhere we
see Var, we simply replace it with its variable. Everywhere we see Abs,
we write A. Finally, everywhere we see App, we write @20

VAN
/\ aN
A

/\ /\

Identifying reducible expressions

Reducible expressions, or redexes for short, are the parts of a lambda ex-
pression where we can apply S-reductions. To find a redex, convert the
expression to an AST and look for an application whose left side is an ab-
straction. If you think about this for a moment, this is like saying “look
for a function definition that is being called.” Here’s the same AST with
all the reducible applications highlighted.

2 At-plication. Get it? No? OK, I think
it’s only amusing to me. Still, it’s easier
to write.

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 99

Q

/N

A e

x/ \ A /A A
a/ \@ b/ \@
a/ \a b/ \b

Normal form

When do we stop doing reductions? We stop when there are no beta re-
ductions left to do. One easy way to see that an expression can no longer
be reduced is to look for redexes using our AST-drawing procedure. If
there are no redexes, the expression is what we call a normal form.

For example, the following expressions are already in normal form:

X
XX
AX.y

Xz

However, the following are not:

(Ax.x) (Ax.x)
A\x.Ax.2)y
y(Ax.xx) (Ax.xx)

Try reducing the above expressions yourself. 21

Normal order

In the tree above, the “outermost leftmost” reduction applies the argu-
ment ((Aa.aa) (Ab.bb)) to the function (Ax.y).?2 Always following
the outermost leftmost beta reduction, at every step, is what we call the
normal order reduction.

Let’s reduce this expression using the normal order.

(Ax.y) ((Aa.aa) (Ab.Dbb)) given
([((Aa.aa) (Ab.bb))/x] y) | P reduce ((Aa.aa) (Ab.bb)) for x
y substitute and done

21
“ULIO] [EULIOU OU sey uorssardxa pimy) oy,

2 “Quter” means up the tree in our
diagrams.

100

Applicative order

In the tree above, the “innermost leftmost” reduction applies the argu-
ment (Ab.bb) to the function (Aa.aa).??> Always following the inner-
most leftmost beta reduction, at every step, is what we call the applicative
order reduction.

Let’s reduce this expression using the applicative order.

(Ax.y) ((Aa.aa) (Ab.Dbb)) given
(Ax.y) (([(Ab.bb) /a] aa)) p reduce (Ab.bb) for a
(Ax.y) ((Ab.bb) (Ab.Dbb)) substitute

(Ax.y) ((Za. [a/b] bb) (Ab.bb)) | « reduce a for b

2 “Inner” means down the tree in our
diagrams.

(Ax.y) ((Aa.aa) (A\b.Dbb)) uh-oh... we're back to where we started

In this case, the applicative order reduction does not terminate. If
you were following along, though, you know that we proved that the
expression has a normal form because we were able to reduce it using
the normal order.

Confluent, but with a catch

If an expression has a normal form, reductions can be applied in any or-
der. Except, as you saw above, that’s not the entire story. When we say
“reductions can be applied in any order,” we mean that you can never
derive an incorrect expression by your choice of 5 reductions. Never-
theless, an unwise choice may reproduce an expression you had already
evaluated.

Fortunately, there is an easy way to avoid the pain: choose the normal
order. If a normal form exists for expression ¢, then the normal order
reduction will find it. By contrast, if a normal form exists for expression
e, then the applicative order reduction may find it.

You might be wondering why we even care about applicative order.
It turns out that applicative order is equivalent to the order employed
by most ordinary programming languages like Java and C! We call this
kind of program evaluation eager evaluation. Very few languages utilize
the normal order because it is difficult to implement, however there are
examples. Haskell, for example, uses the normal order utilizing a form
of evaluation we call lazy evaluation.

Nontermination

You might be thinking “I'm so glad I read this far in the course packet.
Now all of my lambda calculus reductions will terminate!” I have sad
news for you. As with ordinary programming languages, it is possi-
ble to write lambda expressions whose reductions will never terminate,
regardless of your choice of reduction order. Consider the expression

INTRODUCTION TO THE LAMBDA CALCULUS, PART 2 101

(Aa.aa) (Ab.bb). Since there is only one redex, the normal order and

the applicative order are the same. Go ahead, give the reduction a try.

I'll wait.?* % Forever.
When we say that an expression does not have a normal form, non-

termination is what we mean. The expression (Aa.aa) (Ab.bb) does not

have a normal form.
Remember, the lambda calculus was designed to capture all the es-

sential parts of computation. If itis possible to write an infinitely-looping

program like the following in an ordinary language,

while(true) {}

then we should not be surprised that we are also able to write nonter-
minating programs in the lambda calculus.

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

