
Introduction to the Lambda Calculus, Part 1

This is part 1 of a two-part reading on the lambda calculus. In this read-
ing, I introduce the lambda calculus, its origins and purpose, and dis-
cuss its syntax. In part 2, I will discuss its semantics.

Introduction
The lambda calculus is a model of computation. It was invented in
the 1930’s by the mathematician Alonzo Church, who like his contem-
porary, Alan Turing, was interested in understanding what computers
were capable of doing in principle.

For me, there are three really remarkable things about the lambda
calculus.

1. Although this fact has never been proven, it is widely believed that
the lambda calculus is capable of expressing any computation.

2. Itwas invented before any computers actually existed in the realworld.
3. It is really, really simple.

The lambda calculus is equivalent in expressive power to that other
famous model for computation, the Turing machine. Unlike the Turing
machine, though, the lambda calculus has an elegance to it that the Tur-
ing machine lacks. For starters, with some effort, you can understand
a “program” written in the lambda calculus. It is incredibly difficult to
understand any kind of “program” written for a Turing machine, be-
cause a Turing machine closely corresponds to a mechanical computer.
The lambda calculus, on the other hand, is essentially the language of
functions.

As a result, the lambda calculus serves as the theoretical foundation
for many real programming languages, most notably LISP. More mod-
ern languages, like ML and Haskell, are also deeply influenced by the
lambda calculus. Many ideas that came from the lambda calculus, like
“anonymous functions,” have found their way into bread-and-butter



70

languages like Javascript, Java, C#, and even C++. When we talk about
“functional programming,” at its core, what we’re talking about is the
lambda calculus.

The lambda calculus as a programming language

The lambda calculus can be thought of as a kind of minimal, universal
programming language. What do I mean by “minimal”? I mean that it
is small and that its features are essential in some way. By “universal”
I mean that it is capable of expressing all computable functions. While
it is probably not the most minimal programming language11, it is the 11 In fact, the Intel mov instruction all by

itself has the same expressive power.
See the paper mov is Turing-complete, by
Stephen Dolan, University of Cambridge
Computer Laboratory.

most useful minimal language that I know of. Wewill talk about what a
computable function is later; for now, understand it to mean that an ideal
computer should be capable of computing it.

Formal definitions
Since I claim that the lambda calculus is like a programming language,
we ought to be able to examine it formally like a programming language.
Most formal specifications of a language come in two pieces: 1. syntax
and 2. semantics.

Syntax is the “surface appearance” of a programming language. For
example, the following snippets are from Java and F#, respectively.
Java:

int sum(List<Integer> lst) {
int accumulator = 0;
for (Integer i: lst) {

accumulator += i;
}
return accumulator;

}

F#:
let sum xs

let mutable accumulator = 0
for x in xs do

accumulator <- accumulator + x
accumulator



INTRODUCTION TO THE LAMBDA CALCULUS, PART 1 71

These two languages have different syntax, so they look different;
they use different words. But both sum functions written here convey
exactly the same meaning. Therefore, the two functions have the same
semantics.

Syntax of the lambda calculus
So let’s start with the appearance of the lambda calculus. What does it
look like?

Here’s one of the simplest functions you can write in the lambda cal-
culus: the identity function.

λx.x

You might have seen this in algebra before. It looks something like:

f(x) = x

Or maybe Java?

T identity<T>(T t) {
return t;

}

The lambda calculus version expresses exactly the same concept as
the algebraic and Java versions.

Actually, the lambda version is more concise: In the algebra version
and the Java version, functions are named. In the algebraic expression
above, the function is named f. In the Java version is it called identity.
In the lambda calculus, functions do not have names associated with
them. They are all anonymous. Why? Because Church was looking for a
minimal model of computation. As it turns out, function names are not
essential.

Backus-Naur form
Syntax is the arrangement of words and phrases to create well-formed
sentences in a language. When we say well-formed, what we mostly
mean is thatwe are not just stringing togetherwords arbitrarily, forming
nonsense. Instead, there are rules that dictate how words go together.
These rules ensure that sentences in our language follow patterns that
allow us to extract conventional meanings from them.

The rules that define a syntax are called a grammar. The bootstrap-
ping problem of how exactly one comes up with a language that de-
scribes languages dates back to Indian scholars of antiquity. In the 1950’s,
John Backus and Peter Naur devised a simple, formal solution. Using



72

their system, one can “generate” all of the valid sentences belonging to
a language. That system is now known as Backus-Naur form, or BNF.

Here is the grammar for the lambda calculus:

<expression> ::= <variable>
| <abstraction>
| <application>

<variable> ::= x
<abstraction> ::= λ<variable>.<expression>
<application> ::= <expression><expression>

This grammar is important enough—and simple enough—that I sug-
gest that you memorize it.

BNF has two kinds of grammar constructions: nonterminals and ter-
minals. In the grammar above, nonterminals are written between angle
brackets (< and >). Other characters or words are terminals. I will ex-
plain what these things mean in a moment.

The ::= means “is defined as” and the | means “alternatively.” So if
you read the definitions literally, they say:

<expression> is defined as <variable>. Alternatively, <expression>
is defined as <abstraction>. Alternatively, <expression> is defined as
<application>.

<variable> is defined as x.

<abstraction> is defined as λ<variable>.<expression>.

<application> is defined as <expression><expression>.

Each line in the grammar is known as a production rule (or just rule for
short), because it produces valid syntax. If you start with the “top level”
nonterminal <expression>, and follow the production rules, when you
finally have a sentence that contains only terminals, you now have a
valid sentence in the grammar. Since our grammar is for the lambda cal-
culus, this means that you have a valid lambda expression (program).

Following a rule is called an expansion. Let’s try a couple expansions
and see what kind of sentences we can get.



INTRODUCTION TO THE LAMBDA CALCULUS, PART 1 73

Example 1:
1. Start with <expression>.

<expression>

2. Expand it into either <variable>, <abstraction>, or <application>.
Let’s choose <variable>.

<variable>

3. If we look at our definition for variable, there is not much choice. It
must be expanded into one thing only:

x

Since no nonterminals remain, we now know that x is a valid lambda
calculus program.

Example 2:
1. Start with <expression>.

<expression>

2. Let’s expand it into <abstraction>.

<abstraction>

3. This also expands into the following.

λ<variable>.<expression>

4. Asweknow, <variable> only expands into one thing, x, but <expression>
could be many things.

λx.<expression>

5. It should be apparent, at this point, that this process is recursive.
Sincewedon’t have all day, let’s expand <expression> into <variable>
and choose x again.
Since no nonterminals remain, we now know that λx.x is a valid

lambda calculus program. In fact, it’s the identity functionwe discussed
before.



74

λx.x

Parsing
If you think about the kind of sentence generation we did above as a
function, at a high level, it would look something like this (pay attention
to the parameters and return types):

Sentence generate(Grammar g) {
// algorithm

}

Parsing is, in some ways, the converse:

bool parse(Sentence s, Grammar g) {
// algorithm

}

In other words, instead of generating a sentence in a grammar, a
parser recognizes whether a sentence belongs to a grammar. If a sentence can
be generated from a grammar, parse returns true. If a sentence cannot
be generated, parse returns false.

In practice, we often expand the definition of parse a tad so that,
if parse would return true, it returns a derivation, otherwise it returns
null.

For example, we already know that λx.x parses, but what does its
derivation look like? (Fig. 10)

Figure 10: Derivation of the expression
λx.x.

In programming languages, a derivation has a special name: we call
it a syntax tree, because it shows how the parts of a program are related
to each other. Understanding how a lambda expression parses will help
you understand how you can “compute” things using it.

Precedence and Associativity
A few little details often trip up newcomers to the lambda calculus.
These details rely on concepts called precedence and associativity.

The dictionary defines “precedence” as the condition of being more
important than other things, and this is essentially the same idea when
we talk about languages. Precedence in a programming languagemeans
that certain operations are evaluated before others. Using algebra again
as an example, this should already be familiar to you. For example, you
know that the algebraic expression

x + y * z

needs to be evaluated by first multiplying y and z, then finally by
adding x to the product. Without the rule that says that multiplication



INTRODUCTION TO THE LAMBDA CALCULUS, PART 1 75

has higher precedence than addition, the above expression would be
ambiguous, because it could be parsed in one of two ways (Fig. 11)

Figure 11: Without precedence, you’d
have multiple derivations of the expres-
sion x + y * z. The left derivation is
the one we want.

You probably recognize that the parse on the left is the correct one,
because it implies that the addition depends on the multiplication, not
that the multiplication depends on the addition.

Therefore, precedence is used to remove ambiguity from a language.
In the lambda calculus, application has higher precedence than abstraction.
This means that if you have an expression like

λx.xx

you should understand it to mean the derivation shown in Figure 12
and not the one shown in Figure 13.

Figure 12: Correct derivation of the
expression λx.xx.

Evenwith precedence, we are occasionally facedwith ambiguity. For
example, the lambda expression

xxx

Should we think of this expression as (xx)x or x(xx)? Both forms
utilize application. We know that application has higher precedence
than abstraction, but there’s no abstraction here. Just two different ways
to apply the application rule. Associativity solves this problem.

Associativity rules tell us, in cases where the precedence is the same,
which parse we should choose.

Application is left-associative. Therefore, we group application expres-
sions to the left ((xx)x) instead of to the right (x(xx)).

Figure 13: Incorrect derivation of the
expression λx.xx.

We also have the same problemwith lambda abstractions. For exam-
ple,

λx.xλx.x

Should we interpret this expression to mean λx.(xλx.x) or
(λx.x)(λx.x)? In other words, how much of the sentence is included
in the expression that comes after the first period?

Abstraction is right-associative. I like to think of this as meaning that
“the period is greedy.” The expression after the period extends as far
to the right as makes sense logically. So the correct interpretation is
actually λx.(xλx.x).

These rules take a little time to internalize, but after some practice,
you will eventually get the hang of them.


	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Normal form
	Reduction order

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial


