
Appendix A: Introduction to LATEX

This tutorial walks you through:
• how to pronounce LATEX;
• compiling a LATEX document;
• dealing with compiler errors;
• mathematical formulas; and
• formatting code.

This tutorial assumes that you already have LaTeX installed on your
machine. If you don’t, you need to install it56. Our UNIX lab machines 56 https://www.latex-project.org/

get/already have LATEX installed. Several students also report to me that
Overleaf57 is a pleasant alternative to installing LATEX locally, but I have 57 https://www.overleaf.com/

not tried it myself.

Pronouncing LATEX
LATEX is pronounced LAH-tekh. The “TEX” part consists of the Greek
characters, tau, epsilon, and chi, and is a reference to the Greek word,
technē, meaning “art” or “craft,” which is the root of the word technical.
TEXwaswritten by the computer scientist Donald Knuth. The “La” part
comes from Leslie Lamport, who was the person who packaged up TEX
with a handy set of macros to make writing easier.58 58 Both Knuth and Lamport have con-

tributed extensively to the field of
computer science, and have been sub-
sequently awarded Turing Awards for
their work. To be clear, though, those
Turing Awards were not for TEX/LATEX.

Compiling a LATEX document
Suppose youhave aLATEXfile called file.tex. You can compile file.tex
to a PDF like so:

$ pdflatex file.tex

https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.latex-project.org/get/
https://www.overleaf.com/
https://www.overleaf.com/

256

pdflatex will print out a lot of stuff. If your file.tex has no errors,
you should see output that looks something like the following,

Output written on file.pdf (1 page, 27256 bytes).

and you will have a PDF version of your LATEX document.

Dealing with compiler errors

If things gowrong, youwill need to debug your LATEX, just as you debug
any other computer program. Look for missing brackets (e.g., [and])
or curly braces (e.g., { or }), look for typos in commands, and above all,
read the output that the compiler is printing. LATEX error messages are
not the most understandable things, but they usually do tell you where
to find the error.

One important thing to be aware of is that the LATEX compiler usually
drops you into an interactive shell instead of just stopping (like javac
does). For example,

$ pdflatex file.tex
... lots of output ...
! Undefined control sequence.
<recently read> \tod

l.19 \item \tod
{ANSWER}

?

Annoyingly, your cursor sits on this line and doesn’t give you even a
clue as to what to do.59 The correct thing to do is easy: type a capital X 59 By the way, I used LATEX for years

without actually knowing the correct
way to escape from this situation. I am
not ashamed to admit that I actually
used to call the kill command to
forcibly shutdown LATEX.

and press the ENTER key.
More importantly, this compiler message actually tells me where to

find the problem. On line 19 (l.19), something about the LATEX com-
mands \item \tod causes an Undefined control sequence. Onemight
argue that this is not a very good error message, but hey, all the infor-
mation you need is there.

When I open up my file.tex I see the following on line 19:

\item \tod{ANSWER}

Oops! \tod should be \todo. After fixing this and running pdflatex

APPENDIX A: INTRODUCTION TO LATEX 257

again, file.tex again compiles correctly.

Mathematical formulas
One of LATEX’s great strengths is that it can produce beautiful-looking
mathematical formulae. This is mostly easy to do, too: just put a math-
ematical expression in between a pair of dollar signs. For example:

$x + 5$

will produce a pretty-looking x+ 5 expression.
I have not yet come across a mathematical figure that I could not re-

produce using LATEX. That’s not to say that it is always easy, just that it
is possible. See the LATEX/Mathematics60 reference for more information. 60 https://en.wikibooks.org/wiki/

LaTeX/Mathematics

Formatting code
Code is sometimes frustrating to format in LATEX. Fortunately, there are
two approaches, one easy, and one... less easy. Let’s look at the easy one
first.

LATEXhasmany special “environments” that you can use for specially-
formatted blocks of text. A very useful one for code is called verbatim.
You use it like this:

\begin{verbatim}
code goes here

\end{verbatim}

For example,

\begin{verbatim}
public static void main(String[] args) {
System.out.println("Hello world!");

}
\end{verbatim}

verbatimwill reproduce the text using amonospaced “typewriter” font
that looks a lot like how we normally format code.

But LATEX actually lets you do some very fancy things with code. In-
stead of using the verbatim environment, you can alternatively use the
lstlisting environment. You need to do a little extra work:

https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://en.wikibooks.org/wiki/LaTeX/Mathematics

258

1. Youmust add \usepackage{listings} to the top of your document.

2. Youmust supply a \lstset command, e.g., \lstset{language=Pascal}
for the Pascal language.

3. You can then put your code inside a lstlisting environment.

The listings package can produce genuinely beautiful looking for-
matted code, with syntax highlighting and everything. If you’re inter-
ested, see the LATEX/Source Code Listings61 page. 61 https://en.wikibooks.org/wiki/

LaTeX/Source_Code_Listings

https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Normal form
	Reduction order

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

