A Slightly Longer Introduction to F#

This tutorial goes deep into the F# language. As before, you are strongly
encouraged to follow along on your computer.

Let’s look at a very simple F# program in source code form.

[<EntryPoint>]

let main argv =
printfn "Hello, %s!" argv.[0]
0

Type this program into an editor and save it with the name helloworld.fs.

I recommend typing the program instead of copying-and-pasting it be-
cause retyping it will force you to notice important details about the
program.

Hopefully it’s not too much of a stretch to figure out what this pro-
gram does! We will look at this program line-by-line to understand
what its parts are, but first, let’s understand how to run this program.

The F# Compiler

As with any other programming language, your computer cannot un-
derstand an F# program in source code form. It must be translated into
another form. Unlike a language like C, however, we do not translate
F# directly into an executable binary. Instead, the F# compiler, called
fsharpc, converts F# source code into an architecture independent form;
architecture independence means that the resulting compiled program
can be run on any computer: a personal computer, a cellphone, a super-
computer, a watch, or even an embedded computer (like the kind in
“smart lightbulbs”).

How is this independence achieved? By using a virtual machine?®. A
virtual machine provides a simple abstraction that hides many of the
quirks present in specific hardware. A virtual machine looks like a new
kind of simple hardware, with its own instruction set and simplified se-
mantics. Virtual machines even allow languages to be fype safe at the
virtual hardware layer, which means that many of the security vulnera-
bilities commonly exploited in languages like C simply are not possible.

3 Specifically, a process virtual machine,
which is a virtual machine specifically
designed to host a language. Such VMs
are simpler than fully virtual machines,
which are intended to mimic an actual
processor, along with all its quirks, in
order to host an entire operating system.

172

The task of building a virtual machine for your platform is up to the
language implementors, who have typically have a much better under-
standing of how to address code portability concerns than your typical
programmer. This design is essentially the same taken by the Java pro-
gramming language: javac produces Java byte code, which is then in-
terpreted by the Java Virtual Machine (JVM). This allows you to write
your code once and run it anywhere. “Write once, run anywhere” was
even the slogan used by Sun Microsystems when they originally mar-
keted the Java programming language in the mid 1990’s>. f Here is a
(snippet of the) translation of the above program into virtual machine
byte code, which is the virtual machine equivalent of machine code. This
byte code, called the Common Intermediate Language (CIL), is specif-
ically for Microsoft’s VM, the Common Language Runtime (CLR).

0000000 4d 5a 90 00 03 00 00 OO0 04 00 00 00 ff ff 00 00
0000010 b8 00 00 00 00 00 OO OO 40 00 00 00 OO 00 00 00
0000020 00 00 00 00 00 00 OO OO 0O 00 00 OO OO 00 00 00
0000030 00 00 00 00 00 00 00 00 00 00 OO0 00 80 00 00 00
0000040 Oe 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 68
0000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f
0000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20
0000070 6d 6f 64 65 2¢ 0d 0d Oa 24 00 00 00 00 00 OO 0O
0000080 50 45 00 00 4c 01 03 00 da 06 ca 5b 00 00 00 00
0000090 00 00 00 00 e0 00 Oe 01 Ob 01 08 00 00 08 00 00

Although it looks similar from our perspective to x86 machine in-
structions, the format is quite different. Here’s the same information
using CIL’s instruction mnemonics (i.e., “assembly”):

.class public abstract sealed auto ansi

Program

extends [mscorlib]System.Object
{

.custom instance void [FSharp.Core]lMicrosoft.FSharp.Core.
CompilationMappingAttribute::.ctor(valuetype [FSharp.Corel
Microsoft.FSharp.Core.SourceConstructFlags)

= (01 00 07 00 00 00 00 00) //
// int32(7) // 0x00000007

.method public static int32
main (
string[] argv
) cil managed
{
.entrypoint
.custom instance void [FSharp.Core]Microsoft.FSharp.Core.
EntryPointAttribute::.ctor ()
= (01 00 00 00)
.maxstack 4
.locals init (

It should be noted that neither Mi-
crosoft nor Sun Microsystems invented
the idea of portable bytecode. That
honor appears to go to Martin Richards,
who came up with O-code to make it
easier to port the BCPL language in the
mid-1960’s.

A SLIGHTLY LONGER INTRODUCTION TO F#

[0] class [FSharp.Core]Microsoft.FSharp.Core.FSharpFunc 2<
string, class [FSharp.Core]Microsoft.FSharp.Core.Unit>
vV_o,

[1] string V_1

// [3 5 - 3 25]

IL_0000: 1ldstr "Hello, %s!"

IL_0005: newobj instance void class [FSharp.Corel
Microsoft.FSharp.Core.PrintfFormat “56<class [FSharp.Corel]
Microsoft.FSharp.Core.FSharpFunc "2<string, class [FSharp
.CorelMicrosoft.FSharp.Core.Unit>, class [mscorlibl]
System.I0.TextWriter, class [FSharp.Core]Microsoft.
FSharp.Core.Unit, class [FSharp.Core]lMicrosoft.FSharp.
Core.Unit, string>::.ctor(string)

IL_000a: call 110/*class [FSharp.CorelMicrosoft.
FSharp.Core.FSharpFunc "2<string, class [FSharp.Core]
Microsoft.FSharp.Core.Unit>*/ [FSharp.Core]Microsoft.
FSharp.Core.ExtraTopLevelOperators::PrintFormatLine<
class [FSharp.CorelMicrosoft.FSharp.Core.FSharpFunc ~2<
string, class [FSharp.Core]Microsoft.FSharp.Core.Unit>>(
class [FSharp.Core]lMicrosoft.FSharp.Core.PrintfFormat
“4<!10/*class [FSharp.Core]Microsoft.FSharp.Core.
FSharpFunc "2<string, class [FSharp.CorelMicrosoft.FSharp
.Core.Unit>*/, class [mscorlib]System.IO0.TextWriter,
class [FSharp.CorelMicrosoft.FSharp.Core.Unit, class [
FSharp.Core]Microsoft.FSharp.Core.Unit>)

IL_000f: stloc.0 // V_0

IL_0010: ldarg.0 // argv

IL_0011: 1dc.i4.0

IL_0012: 1ldelem [mscorlib]System.String

IL_0017: stloc.1 // V_1

IL_0018: ldloc.0 // V_0

IL_0019: 1dloc.1 // V_1

IL_00la: callvirt instance !1/xclass [FSharp.Corel]

Microsoft.FSharp.Core.Unit*/ class [FSharp.Corel]

Microsoft.FSharp.Core.FSharpFunc "2<string, class [FSharp

.CorelMicrosoft.FSharp.Core.Unit>::Invoke (!0/*string*/)
IL_001f: pop

// [4 5 - 4 6]
IL_0020: 1ldc.i4.0
IL_0021: ret

} // end of method Program::main
} // end of class Program

There is quite a lot of stuff baked into this bytecode. Ordinary as-
sembly code is very primitive; it has no notion of data types, classes,
methods, and so on. The CLR, on the other hand, does know about
these things. For example see if you can find the text .method public
static int32 main in the CIL program above. That section looks a lot
like a Java method, doesn't it? Note that you do not need to know CIL
in this class. I'm just showing this to you to give you some perspective.

173

174

History

F# was developed by a research group at Microsoft Research, led by
Don Syme (Figure 17). Although F# has some novel features, particu-
larly the ways in which it interoperates with other .NET code, its syntax
and semantics are largely inspired by the ML family of programming
languages. Syntactically, F# added whitespace-sensitivity (like Python)
and “lightweight” refinements of older ML syntax that, in my opinion,
makes it very pleasant to use. If you like Python, you'll probably like
F#.

ML was designed by researchers at the University of Edinburgh, most
notably Robin Milner (Figure 18) and Luca Cardelli (Figure 19), in the
early 1970’s. ML stands for “meta language,” because it was originally
designed to be a meta language for writing “proof tactics” (you can
think of these as search procedures) for the LCF automated theorem
prover. Although ML was heavily inspired by mathematical logic and
early functional programming languages like LISP?, its authors made a
concerted effort early on to create something “elegant.” But what makes
ML especially interesting is that the language design was not static. Mil-
ner was inspired by other programming language research happening
concurrently at Edinburgh, notably the HOPE programming language.
ML borrowed many ideas from these other languages whenever a fea-
ture made the language feel simpler or more elegant to its authors. For
example, pattern matching, which is a feature widely enjoyed by ML
users originally came from HOPE.

I enjoy reading ML's early design documents, because it is clear that
the most important thing was to build a “simple and well-understood”
language. ML was also one of the first languages to have a complete
formal specification. Nonetheless, ML has a strong pragmatic streak
that makes it—in my opinion—a lot more fun to program in than other
programming languages.

ML quickly outgrew its origins in the LCF project and was used widely
among academics starting in the late 1970’s. “Standard ML” (SML)
arose in the 1980’s out of a desire to allow for many implementations
of ML. One of the most popular versions of SML is the “Standard ML
of New Jersey” (SML/NJ) implementation that was jointly developed
by Bell Labs and Princeton University, both of which are in New Jersey.
Our lab machines have smlnj interpreters installed on them, so if you're
curious about the differences between F# and SML, have a look.

Figure 17: Don Syme.

Figure 19: Luca Cardelli.

30 The first version of ML was written in
LISP!

A SLIGHTLY LONGER INTRODUCTION TO F# 175

Compiling using dotnet

If you've programmed using Microsoft Windows before, you may have

used the Visual Studio IDE3!. Visual Studio is the de facto code editor for 31 Confusingly, “Visual Studio” is a
commercial F# programmers. You are welcome to use Visual Studio if completely different product than
“Visual Studio Code.”

you have it, but as it is quite expensive, I do not require it for this class.
Instead, we will be using the cross-platform dotnet tool, which runs the
F# compiler for us.

MSBuild

Manually managing the F# compiler can get a little annoying in the same
way that managing javac or gcc or gcc can be annoying. Therefore, this
class asks you to produce code as a part of an MSBuild project. MSBuild
is Microsoft’s (much more sophisticated) equivalent to C’s Makefiles.
You should have first encountered dotnet in A Brief Introduction to F#.
Because MSBuild projects are written in XML, we will mostly create
and manage our projects using a command line tool called dotnet. This
tool automatically generates and edits MSBuild files for you. However,
since the dotnet tool is still in its infancy (it was first released in late
2016), we will occasionally need to modify MSBuild files by hand.

New projects

We create new projects using the dotnet new command. Typing this
command without arguments will show you a set of project templates
that you can use to create a new project. For this class, we will mostly
use the command dotnet new console -lang F# which creates a new
project for a command-line program using F# as the language.

Note that dotnet new creates a new project in the current directory.
Be careful if you are putting your code in a location that already has
code as the effect may not be what you intend.

The default console project is a helloworld program, which is quite
convenient.

Building

To build a project, cd to the directory containing your project files and
type

$ dotnet build

176

Running

To run a project, cd to the directory containing your project files and
type

$ dotnet run

Adding a new file to a project

By default, your project contains only a single file called Program.fs.
Unlike Java, F# does not care where you put your code. It could all go
into a single source code file.

However, as your projects grow in size, you will find it beneficial to
organize your code across multiple files. I like to organize my code ac-
cording to “responsibilities.” For example, maybe I have a program that
reads input, does some processing, builds a data structure, computes
some values, and then prints out the result. In this case, I might have
a file called io.fs for input and output processing, utils.fs to handle
data manipulation (like converting data from arrays into hash tables),
and algorithms.fs for the core computation. I personally like to keep
very little in the Program.fs file, which mostly just contains the main
function.

However, use whatever system of organization makes sense to you.

To add a new file to your project, you need to do two things. Suppose
we create a new file called io.fs and we want to call its code from the
Program.fs file. Look for a .fsproj file in your project directory. This
is your project specification. Open it up with your favorite code editor.
You should see something like

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</0OutputType>
<TargetFramework>netcoreapp2.1</TargetFramework>
</PropertyGroup>

<ItemGroup>
<Compile Include="Program.fs" />
</ItemGroup>

</Project>
Weneed toadd a Compile tagjustabove the Compile tag for Program.fs

so that MSBuild will compile io.fs first. Here’s what my .fsproj file
looks like after I make the change:

A SLIGHTLY LONGER INTRODUCTION TO F# 177

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</0OutputType>
<TargetFramework>netcoreapp2.1</TargetFramework>
</PropertyGroup>

<ItemGroup>
<Compile Include="io.fs" />
<Compile Include="Program.fs" />
</ItemGroup>

</Project>

Running dotnet buildshould now allow Program. fs torefer to code
stored in io.fs. Note that if you're following along at home, you will
likely see the following error when you try the above.

error FS0222: Files in libraries or multiple-file applications must
begin with a namespace or module declaration

What's the deal? In short, in F#, you must place all library code in-
side either a module or a namespace. Both of these two things are a form
of code organization. We’ll stick to modules for this course, as names-
paces are only slightly different and are not really necessary unless you
are mixing F# and C# code (C# has no notion of modules, only names-
paces).

Put a module declaration at the top of your module to make this er-
ror message go away. For example, in io.fs, put:

module IO
and in your Program. fs, write

open I0

178

Figure 20: “This means something.
This is important.” If you don't get the
reference, your homework is to gather
your friends together and watch Close
Encounters of the Third Kind.

“This means something. This is important.” Understanding code
you wrote.

As a new CS student, you've probably used code that you don’t un-
derstand. Doing so is a bad habit. Whenever you borrow code from
somebody, you really should make the effort to understand it. Let’s un-
derstand the helloworld.fs program we typed in at the beginning of
this reading, line by line.

Entry points

The first line,
[<EntryPoint>]

marks the function as the entry point to the program. The entry point is
the location in the program where computation begins. In Java, themain
function is always the entry point. F# gives you a bit more flexibility: it
can be any single function, as long as that one function is labeled with
the [<EntryPoint>] annotation.

Function definitions
The next line,

let main argv =

denotes the start of a function definition. Unlike C and Java, F#is whitespace-
sensitive, like Python. In F# code must be indented using spaces (not

A SLIGHTLY LONGER INTRODUCTION TO F# 179

tabs— F# is an opinionated language, meaning that code style is enforced
in the language). The body of the function definition begins at the =
character and extends until the end of the indented region below.

Note that, unlike most languages you've studied so far, F# functions
are true functions, meaning that they must always return a value. While
side-effecting functions are possible in F#, they are strongly discour-
aged, and you have do some extra things to use them (like using the
mutable annotation). Thus you are encouraged to write pure functions.
In this class, you should assume that we will be writing pure functions
unless otherwise specified.

This function definition looks fairly sparse, doesn’t it? In fact, despite
the fact that F# is a statically typed programming language, there are no
type annotations in the above. That’s because F# can usually infer your
type annotations without your help.

In F#, declarations of all kinds start with the keyword let. In gen-
eral, you should assume that let simply means that we should bind the
expression to the right of the = to the name on the left of the =.

If you've played with F# a bit you might be thinking, “wait, variables
and functions are declared the same way in F#?” Indeed they are. So

let main argv = ...

declares a function called main with a single argument called argv, bound
to the expression on the right, and

let x =1

declares a variable called x bound to the value 1. The way that F# knows
the first example is a function and not just a variable is because the part
of the expression to the left of the = sign has an argument (i.e., argv).

So in this case, we are declaring a function main that has a single ar-
gument, argv. Since you're new to F#, you may be thinking “how am
I supposed to know what type argv is?” This is admittedly one of the
downsides of type inference- that information is not obvious in the pro-
gram text. That said, unlike a dynamically typed language like Python,
if you get the type of argv wrong, the F# compiler will tell you. Suppose
for a moment that my main function was:

let main argv =

argv + 1
Then F# will report,

error FS0001: The type 'int' does not match the type 'string []'

180

and I will not be able to run the program. Since the type check fails—
argvisastring[], notan int—compilation also fails. This is a feature of
a statically-typed language, because it enables you to find bugs in your
program before you run it.

You can also add type annotations yourself, and if you are at all un-
sure what the types of various things are, I encourage you to write them.
Let’s rewrite our main function with types.

let main(argv: stringl[]) : int =
printfn "Hello, %s!" argv. [0]
0

The syntax of a typed function in F# is the following:

let <function name> (<arg_1>: <type_1>) ... (<arg_n>: <type_n>) : <return type> =

<expression>

It’s up to you how you want to write your programs. F# doesn’t care,
and neither do L. I encourage you to try out the parens-less syntax, how-
ever, as once you are accustomed to it, you will find F# programs very
easy to read.

Function body
The meat of our main function is the following:

printfn "Hello, %s!" argv.[0]
0

Notice that this code is indented from main. The indentation is how we
know that the code is a part of the main function definition. My personal
convention is to use 4 spaces. Others use 2. Again, choose what you like,
but note that the F# compiler will not let you use tabs.

The first line calls the printfn function. Function calls in F# work ex-
actly the same way as “application” in the lambda calculus, which we
will discuss in detail in this class. However, the important thing to know
for now is that an expression of the form

ab
means that we should call the function a with the argument b. The above

is actually valid F#. Here’s an example that might make more sense to
you:

A SLIGHTLY LONGER INTRODUCTION TO F# 181

let b =1
let ax=x +1
ab

which returns 2. Try it in dotnet fsi if you don’t believe me.

Function types

Let’s talk a little about function types. When you type an expression
into dotnet fsi, it will print that expression’s type. The -> type nota-
tion tells us that something is a function. So, for instance,

let ax=x +1

has type
int -> int
because it is a function that takes an int and returns an int.

By the way, when we put the above function a into dotnet fsi, it
actually prints out the following type:

>letax=x+1;;

val a : x:int -> int

Try not to be confused by this. F# is trying to be helpful by including
names along with the types. So the entire expression is called a. This
makes sense, because we asked F# to name the entire expression a by
using the let keyword. Since the entire expression has a -> in it, we
know it’s a function. The stuff on the left side of -> is the type of the
function’s argument. The stuff on the right side of -> is the type of the
function’s return value. So the type of this function’s argument, x, is
int. Finally, the return value has type int.

Polymorphic functions

F# has a very flexible model for polymorphism. Polymorphic code is code
that works for different types of data. You've seen polymorphism be-
fore. Java generics are a kind of polymorphism. For example, we know
that linked lists work equally well for integers and strings, so Java lets
us write:

List<Integer> x = new List<>();

182

for an integer, or
List<String> y = new List<>();
for a string, but we only have to. create one List implementation.

In F# polymorphic types are shown as tick variables. A function with
a tick variable can take any kind of data. For example, let’s look at the
identity function. The identity function just returns whatever it is given.
This should work equally well for any type, right?

let ident x = x

If we type this into dotnet fsi, F# will tell us that the type is:

'a => 'a

Let’s try using ident for values with different types.

> ident b5;;

val it : int = 5

It works for numbers. We got 5 back.
> ident "hi";;

val it : string = "hi"

And it works for strings. We got "hi" back.

Curried functions definitions, function types, and function application

OK, I'm about to introduce something very weird. Try not to get upset.
Have a look at the following program again.

[<EntryPoint>]
let main argv =
printfn "Hello, %s!" argv.[0]
0
We can rewrite main like:

let main(argv: string[]) : int =
printfn("Hello, %s!") (argv.[0])
0

and this is exactly the same program. “BUT WAIT,” you say, “WHY
DOES printfn HAVE TWO PARENS????”

That’s because, in F# function calls are curried.

F# is strongly based on a model of computation called the lambda cal-

A SLIGHTLY LONGER INTRODUCTION TO F# 183

culus. We will discuss the lambda calculus in detail this class. For now,
it’s worth noting that the lambda calculus has no notation for functions
that take multiple arguments. It doesn’t have them because they are not
necessary.

Here’s a function in F# that we tend to think of as “taking two argu-
ments.”

let fxy=xy

However, the type for let £ x y = x yis:
(ta => 'b) -> 'a > 'b

which may make your mind melt a little the first time you see something
like it. These things are actually easy to read with a little practice. Let’s
break it into pieces.

According to the above type, x, our first variable, must be a function
from any type 'a to type 'b. Since the types of 'a and 'b need not be
the same type, F# uses two different letters (a and b).

The thing is, if we squint at the type above a little, it has the form:

stuff -> other stuff

So, in principle, we should be able to give it some stuff and get some
other stuff back. We know that the type of that input stuff, x, is ('a ->
'b). x must be a function, because that’s what it’s type says it is. So let’s
do that. Let’s call £ with a function we’ll call the output g:

let fxy=xy
let ax=x+1
let g=1f a

What is the type of g? It’s also a function. Try it in dotnet fsi so
you can see what type it prints out.

We can keep going. If g is a function, we can call it with an argument,
right?

> 8353

val it : int = 4

So what we’ve learned is that functions of multiple arguments in F#
really are functions that return another function. Composing a multi-
argument function from single-argument functions is called currying,
and calling them with arguments one at a time is called partial applica-
tion.

You may find it hard to imagine why we would ever want partially
applied functions. I did too, when I first learned F#! And, in fact, I
went years without explicitly constructing any curried functions, which

184

seemed to suggest that they were not necessary. Nevertheless, when I
discovered their first “killer application”, parsing, it changed the way
that I thought about them. I now write much more concise, readable
code than the code I wrote before. Part of the reason is that I curry my
functions when it makes sense.

Let’s look at the type of the printfn function. It is:

TextWriterFormat<'a> -> 'a

which is, perhaps, a little puzzling until you recall that F# is designed to
interoperate with other .NET code. People using .NET mostly write C#
code, and C# was strongly inspired by Java, especially its use of generics.
This means that F# programs can have both polymorphic types like 'a
and generic types! For the most part, F# will handle the gory details
of converting between these kinds of types for you, but you can see that
the above type declaration uses both: TextWriterFormat is a C# generic
class, but we can give it a polymorphic type 'a.

Anyway, with the above type declaration, we can see that printfn
takes a TextWriterFormat<'a>and returns an 'a. Hang on... we called
printfn with more than one argument, remember?

printfn "Hello, Y%s!" argv. [0]

So should’t printfn be a curried function? Actually, no— and the
reason is that TextWriterFormat<'a> is already secretly a function. For
example, when used in printfn, the string %s causes F# to infer that you
need a function string -> unit, and so the type of printfn becomes:

(string -> unit) -> string -> unit
and you'd call it like:
printfn "Ys" "heya"
If we use the format string %s %d, then printfn becomes:
(string -> int -> unit) -> string -> int -> unit
and you'd call it like:

printfn "Ys %d" "hello" 1

This is how printfn is able to “magically” determine how many pa-
rameters to take depending on the given format string. Cool, huh? Java
cannot do this, and in fact, Java’s String.format method cannot be stati-

A SLIGHTLY LONGER INTRODUCTION TO F# 185

cally type checked. Instead, it checks dynamically and throws an excep-
tion when you mess up, which is an ugly hack in my opinion.

Return value

The last line in our main program is 0. In F#, the last expression in a
function definition is the return value. If you recall, returning 0 tells the
operating system that “everything ran OK.” Any other value signals an
error.

A few more features

The ML family of languages favors pragmatism over mathematical pu-
rity. Therefore, it allows a programmer great flexibility to wiggle out of
tough situations using mutable variables, side effects, imperative code,
and casts. I strongly discourage you from using these features in this
class. In fact, for this class, use of mutability, side effects, imperative
code, and casts will be penalized. Why? Because I want you to learn
functional programming. When you're all grown up and you leave Williams
College, feel free to use those other features. I myself do this in some cir-
cumstances, particularly when it is important that my code be fast. By
the end of this semester, you will have an appreciation for the tradeoffs
that these little “escape hatches” entail, which are substantial.

Expressions

First, everything in F# is an expression. Using the dotnet fsi read-
eval-print-loop (REPL) program,

> 1;;
val it : int =1

we can immediately see that everything we type in returns a value.

There are no statements in F#, although there are functions that look
similar. Remember printfn from above? You may recall that when we
called it like

printfn "Hello, %s!" "Dan"

it returned unit. What is unit? Well, the purpose of F# is essentially to
produce a side effect. It does not return anything. But in F# everything

186

is an expression, so something must be returned. In this case, since
we don’t expect anything back, the special value () is returned, which
means “nothing” and has type unit. Let’s see for ourselves in dotnet

fsi.

> printfn "Hello, %s!" "Dan";;
Hello, Dan!

val it : unit = Q)

Lambda expressions

Lambda expressions are a feature of F# that allow us to create functions
definitions “anonymously.” In other words, a lambda expression is a
function definition with no name.

The following is a lambda expression that computes the identity func-
tion:

fun x -> x

Try it in dotnet fsi. Here’s another example.

let y =1
(fun x -> x) y

which evaluates to 1.
Lambda expressions are very useful in F#, and we use them widely,
particularly in map and fold functions, which we will get to later.

Types

F# is a statically typed programming language, which means that every
variable and datum in the language must have an associated type la-
bel, and that all operations on data must type check, meaning that those
operations are logically consistent.

F# has a small set of primitive data types. These types represent funda-
mental categories of data representation in the underlying CLR virtual
machine. The complete list may be found online?. Primitive types are
written in lowercase in F#.

F# also allows you to create user-defined types. Note that the conven-
tion in F# is to write variables in all lowercase and user-defined types in

upper camel case’>.

2 https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/basic-types

¥ https://en.wikipedia.org/wiki/
Camel_case

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Normal form
	Reduction order

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced Functional Programming
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

