
A Brief Introduction to F#

This tutorial gets you started learning the F# programming language,which
is a modern version of the highly influential ML programming language.
We focus at first on the F# programming environment and basic syntax.
In subsequent reading, we will dive deeper into F#.
Most students find F# to be foreign at first. It will require you to think in
a new way about programming. However, even if you never program in
F# again, it will very likely influence your programming in positive ways.
After I discovered F#, I wondered why more conventional languages like
Java and C++ had to be so complicated. The short answer is: they don’t
have to be!
Note that if you have F# installed on your computer, you should be able
to follow along by starting the F# interpreter16 and then by typing expres- 16 Type /QiM2i 7bB on the command

line. To quit, type O[mBicc. You will
sometimes hear me refer to this inter-
preter as a “REPL,” which stands for
“read-eval-print loop.”

sions into your console.

Let’s look at our favorite starter program, but written for F#.

printfn "Hello world!\n"

That is the entire program. Refreshing, isn’t it?

What is F#?
F# is a functional programming language. A functional programming
language differs in form than a conventional programming language
like C17 or Java18. Even if you decide that functional programming is 17 C is an imperative programming

language.
18 J is an object-oriented programming
language. Object-oriented languages are
also usually imperative, and this is true
for Java.

not for you, exposure to functional programming ideas will change the
way you think about coding.

Functional programming encourages expressions over statements, im-
mutable instead ofmutable variables, and pure, first-class functions instead
of side-effecting procedures. F# is also strongly typed unlike C, which is
weakly typed, and Python, which is dynamically typed. These differences
contrast sharply with those encountered in languages like C, Java, or
Python. The end result is that functional programs readmore likemath-



138

ematical statements than a sequence of steps. Let’s briefly touch on each
of these concepts.

Immutable variables
In a language like Python or C, a variable can be declared and written
to many times. E.g.,

x = 2
x += 1 # the value of x is now 3
x += 1 # the value of x is now 4
x += 1 # the value of x is now 5

In a functional programming language, a variable can only be written
to once, when it is declared.

let x = 2
x += 1 // can't do this in F#; will not compile

Youmight bewondering how on earth you “update” data. It’s done like
this:

let x = 2
let y = x + 1

where x and y are not the same variable.19 19 In other words, data is never updated!

Variables in F# are immutable, meaning that once they are declared,
their values will never change. If you’re like me, this idea probably has
left you scratching your head. Good. The value of this model of pro-
gramming will become apparent to you in time.

Expressions
In a language like Python or C, a line of code can either return a value
or not. For example, in Python:

x = 2 # returns nothing; this is a statement
x + 1 # returns the value 3; this is an expression

In a functional language, all language constructs are expressions.

let x = 2 // returns a binding of the value 2 to the variable 'x'
x + 1 // returns the value 3

When a line of code returns nothing, we call it a statement. Since it
is pointless to have a line of code that does nothing, a statement does



A BRIEF INTRODUCTION TO F# 139

something by changing the state of the computer. Changing the state of the
computer independently of a return value is called a side effect. Side ef-
fects are either banned in functional languages (e.g., pure Lisp, Haskell,
Excel) or strongly discouraged (e.g., Standard ML, F#).

Pure, first-class functions
A pure function is a function that has no side effects. In F#, we usually
write pure functions.

In C, one can write the following:

int i = 0;

void increment() {
i++;

}
increment(); // i has the value 1

Observe that the increment function takes no arguments and returns
no values and yet, it does something useful by altering20 the variable i. 20 The technical term is mutating.
One is not permitted towrite code like this in a functional programming
language because variables are immutable and functions are pure. In-
stead, one might write

let increment n = n + 1
let i = 0
let i' = increment i // i has the value 0; i' has the value 1

where i and i' are different variables, and where increment is a func-
tion definition for a function called increment that takes a single argu-
ment, n. Function calls look a little strange in F#, so recognize that it
might be a little while before you are good at recognizing their form. It
often helps to rewrite a program to use explicit parentheses and type
annotations:

let increment(n: int) : int = n + 1
let i: int = 0
let i': int = increment(i)

This is also a valid F# program—in fact, it’s exactly the sameprogram—
and if you find yourself strugglingwith syntax, I encourage you towrite
in this style instead.

Function definitions in F# are also first class values. What does that
mean? Among other things, any first class value can always be assigned
to a variable. So yes, you can assign a function definition to a variable.21 21 Most students struggle with this

concept, but it is very important. If
you’re struggling to understand this
idea, this is a great topic of discussion
for class or help hours.



140

For instance,

let increment(n: int) : int = n + 1
let addone = increment
addone(3) // returns 4

The type of the variable addone is a function definition (specifically,
a function that takes an int as input and returns an int, or as we say
for short “a function from int to int”), and since it’s a function we can
call it just as we would call increment.

Since values and variables can be passed into functions, one can pass
variables of “function type” into functions as well:

let increment(n: int) : int = n + 1
let doer_thinger(f: int -> int, n: int) : int = f(n)
doer_thinger(increment, 3) // returns 4

And, just for fun, let’s get rid of the unnecessary syntax so you can
see how simple this program can look:

let increment n = n + 1
let doer_thinger f n = f n
doer_thinger increment 3 // returns 4

Strong types
F# is a strongly-typed programming language. A strongly-typed lan-
guage is one that enforces data types strictly and consistently. That
means that the following kinds of programs are not admissible in F#.
For example, the Python program,

x = 1
x = "hi"

or the C program,

int x = -3;
unsigned y = x;

Even with all the warnings enabled, a C compiler (like clang), won’t
flinch: no errors or warnings are printed for the above program. Nev-
ertheless, it doesn’t make sense to disregard the fact that an int is not
an unsigned int, because assigning -3 to y dramatically changes the
meaning of the value. y is very much not -3 anymore22. 22 If you know some C, try running a

little experiment to see what happens.Both of the above programswould be considered incorrect in F#, since
both contain type errors. Neither program will compile. To convert
from an integer to an unsigned integer, we must explicitly convert them



A BRIEF INTRODUCTION TO F# 141

in F#:

let x: int = -3
let y: uint32 = uint32 x

Strong types help you avoid easy-to-make but costly mistakes.

Other features
F#hasmanyother features, such as garbage collection (like Java), lambda
expressions, pattern matching, type inference, concurrency primitives,
a large,mature standard library, object-orientation, inheritance, andmany
other features. Don’t worry if you don’t know what these words mean
now—we will discuss these features throughout the remainder of the
semester.

Microsoft .NET
F# is a part of an ecosystem of languages and tools developed by Mi-
crosoft called .NET (pronounced “dot net”). Programs written in .NET
are almost entirely interoperable, meaning that different parts of the
same program can be written in different languages. For instance, I
routinely write software that makes use of modules written C#, F#, and
Visual Basic combined into a single program.

.NET is also portable, meaning that it can run on many computer
platforms. Unless you specifically seek to write platform-specific code,
.NET code can be run anywhere the .NET Common Language Runtime
(CLR) is available. This language architecture is similar to, and heav-
ily inspired by, the technology behind the Java Virtual Machine (JVM).
The .NET Core CLR is available on Windows, the macOS, and Linux.
Additional platforms (like Android, iOS, and FreeBSD) are supported
by the open source Mono project.

We will be using the .NET Core framework on Linux for this class. If
you would like to install .NET Core on your own machine, you may do
so by downloading the installer23. 23 ?iiTb,ffrrrXKB+`QbQ7iX+QKfM2if

/QrMHQ�/

Modularity

One feature that we will address right away is F#’s strong support for
modularity. Modules are a way of organizing code so that similarly
named functions and variables in different parts of code do not conflict.
In C, libraries are imported by the C preprocessor by performing the

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download


142

moral equivalent of pasting code from an included library libraries into
a single file and then compiling that. As a result, it is easy to accidentally
give two different function definitions the same name, a so-called name
conflict. Name conflicts are an annoying and commonplace occurence
in C. In F# and other .NET languages, name conflicts are impossible,
because names are scoped, meaning that they only have meaning within
certain boundaries.

F# has a variety of constructs available to scope names: solutions,
projects, namespaces, and modules. For now, we will focus on projects.

A project is a unit of organization defined by .NET. A project contains
a collection of source code files, all in the same language. A project is
either a library, meaning that it must be called by another project, or an
application, meaning that it has an entry point and can run by itself.

Creating the HelloWorld project
In order to provide some structure for our hello world program, let’s
generate an application project. Having an application packaged in this
way makes it self-contained and easy to manage during the develop-
ment process.

We create new F# projects using the dotnet command on the UNIX
command line. Because dotnet creates a project in the existing direc-
tory, you should first create a directory for your project.

$ mkdir helloworld

Now cd into the directory and create the project.

$ cd helloworld
$ dotnet new console -lang "F#"

Bydefault, the above commandwill generate aHelloWorld program.

// Learn more about F# at http://fsharp.org

open System

[<EntryPoint>]
let main argv =

printfn "Hello World from F#!"
0 // return an integer exit code

There’s a little more boilerplate here than we saw when using the
dotnet fsi REPL, and it is mostly unnecessary. But we will keep it
around because it makes working with arguments a little easier.



A BRIEF INTRODUCTION TO F# 143

F# is a “whitespace sensitive” language, like Python. Thatmeans that
the scope of a function definition is determined using rules about inden-
tation instead of relying on curly braces. Thus the last line in the above
main function is the expression 0. The last line of a function definition
denotes the function’s return value, so this function returns 024. 24 When a program’s K�BM function

returns y it informs the operating
system that everything went A-OK. A
non-zero return value indicates a failure.
We’ll talk more about this in the context
of C.

One last thing. Since every language construct in F# is an expression,
printfn is an expression. However, it falls into an special class of side-
effecting expressions. Input and output are inherently side-effecting,
and so any functional language that does not allow at least some side ef-
fects is seriously constrained in terms of expressiveness. Pure functional
languages likeHaskell have a clever but somewhat byzantine system for
dealing with side effects, which is why the first “hello world” program
in my “easy-to-read” Haskell programming book appears on page 154.
Right after the section on “functors,” of course .

Compiling and running your project
Compile your project with:

$ dotnet build

You may also just run the project, and if it needs to be built, dotnet
will build it for you before running it.



144

$ dotnet run

I personally prefer to run the build command separately because the
run command hides compiler output. I like to see compiler output since
it will tell me if it finds problems with my program. Unlike other lan-
guages youmay have used, F#’s compiler generally produces very good
error messages.

Code editors

You are welcome to use whatever code editor you wish on this assign-
ment. Two in particular stand out for F#, however: Visual Studio Code
and emacs. Both are installed on our lab machines. Note, however, that
we will strictly manage our projects using the dotnet command line
tool.

Visual Studio Code

Visual Studio Codeworks out of the boxwith F#, but an extension called
Ionide25 adds additional features like syntax highlighting and tooltips 25 ?iiT,ffBQMB/2XBQf

to your editor. To install Ionide, follow this tutorial on installing exten-
sions26. 26 ?iiTb,ff+Q/2XpBbm�Hbim/BQX+QKf

/Q+bf2/BiQ`f2ti2MbBQM@;�HH2`vNote: Ionide comeswith a variety of build tools such as FAKE, Forge,
Paket, and project scaffolds. Please do not use these tools for this class
as they do not interoperate well with our class environment. Instead,
please use the dotnet command line tool to compile and run your tool
as discussed earler.

2K�+b

If you prefer emacs, you can add the fsharp-mode which adds syntax
highlighting, tooltips, and a variety of other nice features. I personally
prefer this environment, but I understand that emacs is not everybody’s
cup of tea.

If using emacs on a labmachine, try pasting the following into ̃/.local_emacs:2727 On your personal machine, use
ȪfX2K�+b instead.

http://ionide.io/
http://ionide.io/
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery


A BRIEF INTRODUCTION TO F# 145

(require 'package)
(add-to-list 'package-archives '("melpa-stable" . "https://stable.melpa.org/packages/") t)
(package-initialize)
(package-refresh-contents)

;;; Install fsharp-mode
(unless (package-installed-p 'fsharp-mode)
(package-install 'fsharp-mode))
;;; Run fsharp-mode
(require 'fsharp-mode)

The abovewill install bothMELPA,which is an online package repos-
itory for emacs, and the fsharp-mode package. Note that MELPA has
many other modes you can install if you like what you see. One down-
side to MELPA is that it adds a few seconds of startup time to emacs,
but in my opinion, the delay is well worth the wait.

The next time you start emacs with F# code, you will see the new
mode in action.


	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Normal form
	Reduction order

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced Functional Programming
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial


