
A Brief Overview of C

If you’ve never had any exposure to C, this chapter contains most of
what you’ll need to know for this course. If you have had exposure to
C, feel free to skim, but keep in mind that this chapter goes a bit deeper
than most introductions to C.

Let’s look at a very simple C program in source code form.

#include <stdio.h>

int main() {
printf("Hello world!\n");
return 0;

}

Type this program into an editor and save itwith the name helloworld.c.
I recommend typing the program instead of copying-and-pasting it be-
cause retyping it will force you to notice important details about the
program.

Hopefully it’s not toomuch of a stretch for you to figure out what this
program does. We will look at this program line-by-line to understand
what its parts are, but first, let’s understand how to run this program.

The C Compiler
Acomputer cannot understand aCprogram in source code form. Source
code is for humans to read and understand. In order for a computer to
run a program in source code form, it must be translated into an equiv-
alent, machine-readable form called an executable binary. An executable
binary consists of machine code that looks a bit like this:

01111111 01000101 01001100 01000110 00000010 00000001
00000001 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000010 00000000

14

00111110 00000000 00000001 00000000 00000000 00000000
00110000 00000100 01000000 00000000 00000000 00000000
00000000 00000000 01000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00011000 00011010
...

Perhaps not surprisingly, we often call programs inmachine-readable
form “binaries” for short. The program that performs the translation
from source code form to executable binary form is called a compiler.
The C compiler translates C source code programs to machine code.

Note that there is a “human-readable” form of machine code called
assembly language intended to make binary executables a little easier for
humans to read, although reading them in this form is a difficult skill to
attain. Each machine instruction is given a name, called an instruction
mnemonic, and thesemnemonics are printed instead of the binary. There
is (generally) a one-to-one correspondence between assembly language
mnemonics and machine instructions.

To give you a taste for what assembly looks like, here is helloworld
compiled to x86 (Intel) assembly language. You do not need to under-
stand assembly in this class!

.text

.file "helloworld.c"

.globl main

.align 16, 0x90

.type main,@function
main: # @main
.cfi_startproc
BB#0:
pushq %rbp
.Ltmp0:
.cfi_def_cfa_offset 16
.Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp
.Ltmp2:
.cfi_def_cfa_register %rbp
subq $32, %rsp
movabsq $.L.str, %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rax, %rdi
movb $0, %al
callq printf

A BRIEF OVERVIEW OF C 15

xorl %ecx, %ecx
movl %eax, -20(%rbp) # 4-byte Spill
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq
.Lfunc_end0:
.size main, .Lfunc_end0-main
.cfi_endproc

.type .L.str,@object # @.str

.section .rodata.str1.1,"aMS",@progbits,1

.L.str:

.asciz "Hello world!\n"

.size .L.str, 14

.ident "clang version 3.8.0-2ubuntu4 (tags/RELEASE_380/final)"

.section ".note.GNU-stack","",@progbits

History
Now that I’ve defined a few terms for you, let’s briefly discuss some
C history so that you can understand the importance of the language.
Despite being more than 40 years old, C is still widely used.

C is a general-purpose programming language originally designed
between 1969 and 1973 at Bell Labs by Dennis Ritchie. Its purpose was
to make it easier to implement and maintain programs across a variety
of computer architectures. In the early days of computing, portability, or
the ability to easily move a program from one computer platform to an-
other, was difficult. Often, each brand of computer had its own unique
set of machine instructions and programming tools. Porting a program
from one computer to another often meant that the entire program had
to be rewritten. C was one of the first languages designed so that, as
long as each target platform had a standard C compiler, a programmer
needed to do to little more than run the C compiler in order to “port”
their program.

(NOTE: Portability was more of a problem in the early days of com-
puting when there were many different competing and incompatible
computing platforms. Our modern computer ecosystem is dominated
by two platforms, x86 and ARM. Furthermore, portable languages are

16

now the norm, somost programmers don’t thinkmuch about this prob-
lem anymore.)

C is also an imperative language, meaning that in order to instruct a
computer to do something, you need to tell it exactly what to do, step by
step. As you will see this semester, many interesting programming lan-
guages are not imperative. C is also fairly “low-level,”3; meaning that a 3 Ritchie considered C a “high-level”

language, because by the standards of
the time, it was! C looks nothing like
machine code, and many old-timers
considered C far too abstract to be
able to produce fast code. Nowadays,
writing low-level code is discouraged,
because most high-performance lan-
guage implementations are capable
of producing more efficient code than
assembly hand-written by even very
good programmers. We will discuss this
level of abstraction concept more during
this semester.

single instruction in a C program often closely corresponds with a sin-
gle instruction in computer hardware. Consequently, C allows a degree
of control over computer hardware that is not attainable by many other
languages. Thus C is the language of choice for programs where low-
level hardware control is essential, like operating systems. For example,
Linux is written in C. In fact, C was explicitly designed with operating
systems in mind. The first widely-used version of the UNIX operating
systemwaswritten in C by Ritchie and his collaborator, Ken Thompson.

The success of C is partly because it gives programmers a simplified
“model” of a computer, but not such a simple model that it is difficult
to write high-performance code. In fact, as youwill see, in C, memory is
a resource that must be manually managed by the programmer. If you
come from a Java or Python background, this ideawill be foreign to you:
neither language allows you to manually manage the computer’s mem-
ory. Nonetheless, the rules for managing memory yourself are fairly
simple, and with this feature you can write very fast code, control hard-
ware directly, and interact with other low-level parts of your operating
system that would not be possible otherwise.

A typographic convention for this course

Beforewe talk about compiling helloworld.c, take note of a convention
that I will use throughout this course. When you see a line that looks
like,

$ [whatever]

this indicates a command that you should run using the command
line interface (CLI) on one of our lab machines. You can access the CLI
by running the Terminal program on one of our lab machines. The $
denotes the command-line prompt and should not be typed. Be aware
that some lab machines use a different symbol than $ for the command-
line prompt, but the idea is the same.

A BRIEF OVERVIEW OF C 17

Compiling using clang

For this class, we will be using the clang compiler. If you already know
some C, you may be familiar with the alternative gcc compiler. We will
be using clang instead because it supportsmoremodern C features and
it provides much better error messages than gcc.

To compile helloworld.c, type:

$ clang helloworld.c

If you made no mistakes when you typed in your program, clang
will print nothing. This silent-on-success convention is a little counter-
intuitive if you are new to UNIX, but you should remember that most
UNIX programs work this way.

If clang prints an error message, go back and look carefully at your
program to find your mistake and try again.

Once you have successfully compiled your program, you should see
a file called a.out in your working directory. The following command
lists the current directory and shows that I now have an a.out file.

$ ls -l
total 16
-rwxrwxr-x 1 dbarowy dbarowy 8664 Sep 2 13:08 a.out*
-rw-rw-r-- 1 dbarowy dbarowy 97 Sep 2 13:06 helloworld.c

Running the program
Note that all the C compiler does is convert the program into a binary
executable. It does not actually run the program. To run the program,
type

$./a.out

You should be rewarded with the text Hello world! printed on screen.

Don’t speak gibberish
Imagine you’re traveling to Greece. Since they speak Greek there, not
English, you bring a little English-to-Greek phrase book with you. Dur-
ing your daily interactions with people, like asking where you might

18

find a good restaurant, where to rent a bicycle, what to do in the evenings,
etc., you look up the phrase youwant to use in your book, and you speak
that phrase to a person. When they respond, you look up their response
in the book and translate it back to English.

What you do not do is randomly choose phrases from the book and
just say them. Why? Because doing so makes no sense. When you
ask aGreek shopkeeper “Οι άχρωμεςπράσινες ιδέες ύπνο θυμωμένα;”
(“Do colorless green ideas sleep furiously?”) theywill, in all likelihood,
politely shoo you out the door.

Writing a program is exactly like using a phrase book. The purpose
of a program is to communicate what you want to a computer. Right now,
youprobably need to lookupwhat youwant to say using theC language
documentation. Eventually, you will remember phrases and you won’t
have to look them up.

Do not copy and paste code snippets from the internet (e.g., Stack
Overflow) without understanding them. For all you know, you are
speaking gibberish to the computer, and in all likelihood, it will not do
what you want. Stack Overflow is a wonderful resource—for learning
how to solve problems. But to really solve a problem, you must under-
stand the solution.

Let’s understand the program we just typed in.

Library include statements
The first line,
#include <stdio.h>

tells the C compiler to use the stdio library.
What does thismean? Well, it turns out that C is actually quite a small

and simple language. When people think about C programs they’ve
written in the past, most of what they’ve done is use code that comes
from C code libraries. Printing, as it turns out, is not a built-in feature
of the C language! So in order to print things, we import the stdio
library, which provides functionality for “standard input and output”
(i.e., “standard I/O”, often shortened to stdio).

We will talk about how the C compiler links imported library code to
your program in a future lesson.

Function definitions
The next line,
int main() {

denotes the start of a function definition, and that definition continues
until we reach the } character at the end of the program.

A BRIEF OVERVIEW OF C 19

A function, or more precisely in C, a program subroutine, is a sequence
of instructions that are packaged up into a unit. We package code in this
manner so that we can reuse sequences of instructions without having
to type them over and over again. Instead, we call the function, which
has the same effect. Also, since we often want to run the same code
with small variations, function definitions allow us to parameterize the
function so that we can supply the varying values when we call the func-
tion.

This function, which is called main, has no parameters. It is important
to know that the main function in your program is special. The reason
is that when your computer attempts to run your compiled program,
it needs to know where to begin running. That starting point, which is
called an entry point, is always a function called main4 in the C language. 4 This is actually a lie. The actual entry

point is called _start, but the _start
function is generated by the compiler
and contains initialization code for the
C language itself. From a programmer’s
standpoint, main really is the entry
point.

Our main function also returns a value of type int. How do we
know? The text to the left of the function name (in this case, main),
denotes the return type. This means that the very last thing a function
must do is return a value of the given type.

Finally, the “inside” of the function, whatwe call a function body, is the
most important part. The function body is a sequence of instructions to
perform. The key functionality of our helloworld.c program is located
in the main function’s body.

Function calls
A function call tells the C compiler that you would like to use a function
definition. If you define and never call a function, that function’s body
is never run.

A function call is performed by typing the name of the function fol-
lowed by supplying values for its parameters in parenthesis. Suppose
we have the following function definition:

int add(int x, int y) {
return x + y;

}

We call the add function in our program with code that looks like:

add(3,4);

which will return the int value 7.
“But wait,” you protest, “we never call main in helloworld.c!”
Indeed, we never call main. As I noted before, main is a special func-

tion. When you run a program, the entry point is located and run, and
in C, the entry point is the main function. Who calls main, then? The
operating system calls main (or more precisely, the program loader).

20

Program statements
In C, a “line of code” must end in a semicolon. This construct is called
a program statement. This is not unlike ending English sentences with
periods– it tells you where the “end” of a sentence is, which helps with
understanding. If you’ve even encountered a “run on sentence” in En-
glish, you know that sentences without periods are hard to understand.
For the same reason, C statements must end in semicolons.

Note that other programming languages don’t always use this semi-
colon convention. Instead, they have other ways to denote the end of a
statement. Python, for example, is sensitive to indentation. We will see
some other examples as the semester progresses.

Why don’t some C constructs end in semicolons, like #include and
function definitions? Because the C compiler knows when these con-
structs end without needing a semicolon. Admittedly, the rules seem a
bit arbitrary to newcomers, but you’ll eventually get the hang of them.

Printing
Now we get to the most important part of our program:

printf("Hello world!\n");

The printf function prints things to the screen. In this case, it prints
“Hello world!” followed by a command, \n, that tells the computer to
print a new line.

Recall that earlier, I stated that printing was not a feature of the C
language, and here we are, printing. The reason we are able to print is
because, earlier in the program, we told the C compiler to import the
stdio library, which includes the printf function.

Note that this is an example of a function call. We supply the name
of the function, printf, along with its parameter, in this case, the value
"Hello world!\n".

You might be wondering why the function is called printf instead
of just print. The reason is that printf is short for “print formatted.”

On-line help
This is a good time tomention that everyUNIX-like computer, including
the Linux and Mac machines we use in our labs come with a built-in
help system called “manual pages,” or “man pages” for short. Libraries
like stdio are not a part of the C language. Technically they are a part
of a separate collection of code called the “C Standard Library” and are
suppliedwith the operating system. Practically speaking, no C compiler is
shipped out to users without some kind of standard C library, because
little can be achievedwith such a language. Thus you can almost always

A BRIEF OVERVIEW OF C 21

Section Description
1 General commands
2 System calls
3 Library functions, particularly the C Standard Library
4 Special files
5 File formats
6 Games
7 Miscellaneous
8 System administration

Table 1: Sections of a man page.

count on theC standard library being available, with documentation, on
a modern computer.

For example, on a lab machine, you can type the following into your
CLI:

$ man 3 printf

and you will be rewarded with documentation for printf. What does
the 3mean? Youneed to tell manwhich “section” of themanual to search
for printf. The sections are shown in table 1.

Since printf is a part of theCStandardLibrary, we type man 3 printf
to find it. If you just type man printf, the help system will find a differ-
ent printf command which is not the one you want.

Return value
Finally, we get to the penultimate line in the program,

return 0;

The return keyword instructs the function to return the following
value. Since our function definition states that the return value of main
is an int, the value we return must be an int or the compiler will print
a compiler error.5 5 Note that compiler errors are a feature

of a language, and even though they
may seem annoying at times, they are
very useful. Read them! They almost
always correctly tell you what is wrong
with your program. We will talk more
about compiler errors—especially
type errors—in more detail later in the
semester.

If you’re likeme, youmight bewondering, “OK, I understand thatwe
have to return an int because the main function definition says that we
will. But why do we have to return an int? What does this int mean?”

Great question. The meaning of the return value of the main func-
tion is a signal to the operating system that the program either ran fine,
or that it terminated with an error. Conventionally, the return value
0 means “returned without error.” Any other number means that the
program failed. Different operating systems have different meanings
for non-zero return values.

The reason we use these return values for main is due to the design
of the UNIX operating system: in UNIX we are encouraged to construct

22

complex programs out of less complex programs. If another program uti-
lizes your helloworld program, it is important for that other program
to know whether helloworld ran correctly or failed so that it can take
the right action. We will not discuss the UNIX design much during this
course, but if you are interested, I highly recommend taking a course in
operating systems (or read “The Art of Unix Programming” by Eric S.
Raymond, ISBN 0131429019). Understanding the design of UNIX will
make you a better programmer.

One small detail: if you omit the return statement, specifically for the
main function, the compiler will not complain, and will silently return
0.

Compiler warnings
Earlier, we stated that you could compile a C program by typing

$ clang helloworld.c

and that, if the program contained no errors, clangwould print noth-
ing. It turns out that programs often have tiny flaws that are not crucial
to the functioning of the program but which you really should consider
fixing anyway. clang is capable of warning you when your code com-
piles but may not compile as you intend. To show warnings, add the
-Wall flag:

$ clang -Wall helloworld.c

Now the compilerwill print anything potentially problematic. -Wall,
by the way, stands for “all warnings.” For more information on warn-
ings, type man 1 clang into your CLI.

**In this class, your codemust compile without warnings. If you turn
in code that causes clang to print warningswhen -Wall is used youwill
lose points on your homework grade!**

Named compiler output
If clang is able to successfully compile your program, it will print noth-
ing (in fact, it secretly returns 0 behind the scenes) and produce an ex-
ecutable binary called a.out on the side. With the -o option, clang lets
you name this binary. For example,

$ clang -Wall -o helloworld helloworld.c

will run clangwith warnings and will produce an executable binary
called helloworld instead of a.out. This binary can be run with

$./helloworld

A BRIEF OVERVIEW OF C 23

Makefiles
Typing commands like clang -Wall -o helloworld helloworld.c over
and over again gets pretty tedious. And as your programs grow in com-
plexity, you will need to type more complicated commands. There is a
simple facility that is frequently (in fact, almost always) paired with a
C language program: make. In this class, your C programs must always
be accompanied by a makefile.

A makefile tells your C compiler how to build a program. Let’s look
at a simple example.

In your editor, create a file in the samedirectory as your helloworld.c
program and call it Makefile. Type the following into the file:
helloworld: helloworld.c
!→clang -Wall -o helloworld helloworld.c

where !→ represents a tab character.
Note that the space on the second line, before clang, must be a real

tab character, not a bunch of space characters. If you are using emacs and
you’ve named the file “Makefile”, emacs will insert a real tab even if
you’ve configured it to insert spaces instead of tabs. In other words,
emacs does the right thing. Makefiles that do not have tabs will not run
properly.

Now, on your command line, run
$ make helloworld

Assuming that your program has no errors, this will run clang and
produce a new helloworld binary. Maybe.

Wait... “maybe”?
Make is a fairly smart utility. One of the things it does is to checkwhether
you actually need to run clang again. If the helloworld binary is newer
(i.e., has a more recently modification date) than helloworld.c, then
by default, make will not bother running the command again.

Since computers are relatively fast, you might be wondering why
make bothers to do this. For our short helloworld.c program, the time
saved makes almost no difference. The real benefit of make starts to be-
come apparent when we add multiple rules.

make rule
As it stands, our Makefile currently only has a single rule, called helloworld.
A rule is composed of a target, a dependency list, and a command list. Rules

24

have the following syntax:

<target name>: <dependency 1> ... <dependency m>
!→<command 1>
!→...
!→<command n>

The target is the name of the rule. Generally speaking, your target
name should be the same as the name of the file that you want to pro-
duce. In our helloworld target, we have a single clang command that
builds a helloworld binary.

The target name is how make knows to look at the modification date
for the helloworldfile. But howdoes it knowwhat to compare helloworld
against? This is where dependencies come in.

make dependencies
Dependencies tell makewhich file or files your target depends on. In our
case, wewant to update the helloworld binarywhen the helloworld.c
source file changes. helloworld.c is our sole dependency. You can list
as many dependencies as you want, separated by spaces.

You may specify other make targets as dependencies. To demon-
strate, let’s change how we compile helloworld.c. Instead of con-
verting the C program to an executable binary all at once, let’s instead
convert the C program to assembly language, and then convert the as-
sembly language to a binary in a separate step. To be clear, compiling
helloworld.c in two steps is not strictly necessary; I am showing this
as two steps just to make it clear how make dependencies work.

Rewrite your Makefile as:

helloworld: helloworld.s
!→clang -o helloworld helloworld.s

helloworld.s: helloworld.c
!→clang -Wall -S helloworld.c

Now, if you type make helloworld, make will produce an assembly
language file called helloworld.s before producing the helloworld bi-
nary. If you look at the helloworld.s file in a text editor, you should
see something that looks very much like the assembly program shown
earlier in this document.

How does make know that it should produce a helloworld.s before
producing a helloworld file? Because you told it so: the dependency
for helloworld is helloworld.s.

A BRIEF OVERVIEW OF C 25

The make algorithm
When you run make helloworld, make checks that helloworld.s exists
and is older than helloworld. If not, it moves on to the helloworld.s
target, otherwise, it stops.

makenowchecks that helloworld.c exists and is older than helloworld.s.
If not, it looks for a rule called helloworld.c. Since the file helloworld.c
always exists, makewill only run the command in the helloworld.s tar-
getwhen helloworld.c is newer than helloworld.s. After running the
command, the helloworld.s file exists.

Now make returns to the helloworld target, finally producing the
helloworld binary.

make dependencies are a DAG
An astute student (especially if you’ve taken CSCI 136!) should recog-
nize that the chain of dependencies in a makefile can be represented as
a graph. Each make target is a vertex in a graph, and each dependency
is an edge from the target vertex to the dependency, which is also a ver-
tex. In fact, this graphmust be adirected acyclic graph (DAG), otherwise
make will not work properly.

Figure 3 shows the DAG for our helloworld makefile thus far. Figure 3: A directed acyclic graph
representing helloworld dependencies.Thinking about a makefile as a graph is very useful for understand-

ing what makewill do. If you are confused about a makefile, I strongly
recommend drawing the graph out on paper.

Default make target
With our current Makefile, wedon’t actually have to type make helloworld.
In fact, we can just type

$ make

and it will also work. Why?
If you call make without a target name, it will run the first target in

the file. The first target is called the default target. The default target
should generally be the file that you want to produce most often, i.e.,
the executable binary.

In fact, you can call any make target on the command line. If you
type:

$ make helloworld.s

Then you are asking make to produce only the helloworld.s file (and
any other dependencies thatmayneed to be produced to create helloworld.s).

26

“Cleaning”
It is often useful to “clean up” the files created during development so
that only the essential files remain. In our case, the only essential file
is helloworld.c. We can generate helloworld.s and helloworld any-
time we want by running make. In ordinary software development that
uses a build system like make, it is considered polite to always provide a
clean target. In general, clean should remove all temporary files pro-
duced during compilation.

If you use emacs, you probably also produce many files like
helloworld.s as a side-effect. These files are temporary save files
produced by emacs in case your computer crashes while you are work-
ing on a file. They allow you to restore your work in case you forgot to
save. This is definitely useful, but I also like to delete these files when I
clean up, because they add a lot of clutter to my source code folder.

Let’s add a clean target to our makefile. Put the following at the
bottom:

.PHONY: clean
clean:
!→rm -f helloworld helloworld.s *~

Whenwe run make clean, makewill delete those files. We supply the
-fflagwith rm in case files don’t exist. If, for example, helloworld exists
but helloworld.sdoes not, technically rmwill notice that helloworld.s
is missing and terminate with an error. -f, which means “force dele-
tion”, tells rm to ignore those missing files.

One last thing: notice that our clean target does not have any depen-
dencies. When make encounters a no-dependency target, it will sim-
ply run the commands listed in the rule without doing any dependency
modification-time checks. However, the convention in make is that the
target refers to a filename. What if you just so happen to have a file in
your directory called clean? The short answer is that makewill refuse to
clean, because it sees that a file called clean already exists. To let make
know that it shouldn’t bother checking, that clean is a kind of “phony
file,” we write .PHONY: clean. Then if a clean file exists, the clean
target can still be reliably run.

all rule
Sometimes amakefile is a collection of rules for separate programs (e.g.,
a homework assignment consisting of solutions to multiple problems).
It is often convenient to create a single rule that builds all of the tar-
gets. Conventially, this rule is called all and has only dependencies,
no commands. For example,

A BRIEF OVERVIEW OF C 27

all: problem1 problem2 problem3

problem1: problem1.c
!→clang -Wall -o problem1 problem1.c

problem2: problem2.c
!→clang -Wall -o problem2 problem2.c

problem3: problem3.c
!→clang -Wall -o problem3 problem3.c

Notice that in the sample makefile above, all is the first rule, so

$ make all

and

$ make

do the same thing.

More C
Let’s explore some more features of the C language. Since you likely
have been exposed to Java before, C will look visually similar to you.
In fact, Java was explicitly designed to resemble C to encourage C pro-
grammers to try it out. This was a very successful tactic, and it is one of
the reasons why Java is more popular than C now.

Keep in mind, however, that C is not Java. In fact, Java is much more
sophisticated than C, and Java does a lot more work behind the scenes
to ensure that your program does what youwant. C lacks many of these
safeguards.

Comments
In C, there are two kinds of comments: single-line comments andmulti-
line comments. They work exactly the same way as their Java equiva-
lents.

// This is a single-line comment.

/* This is a
multi-line comment. */

28

Primitive Description
char The smallest addressable unit of the machine that can contain an element of the ASCII character set.
int A signed integer.
float An IEEE 754 single-precision binary floating point number.
double An IEEE 754 double-precision binary floating point number.

Table 2: C primitive data types.

Operator Description Example Evaluates To
+ Addition 2 + 2 4
- Subtraction 2 - 2 0
* Multiplication 2 * 2 4
/ Division 2 / 2 1
% Modulus 2 % 2 0

Table 3: C infix operators.

Variables
As with Java, C has variables. The statement

int i = 0;

does essentially the same thing in Java as it does in C. First, storage
for the variable i, which is of type int, is allocated. Then the integer
value 0 is assigned to that location. We will talk about allocation and
assignment in much more detail when we talk about how C deals with
computer memory. For now, remember that using a variable properly
always consists of two steps:

1. Allocation is the mechanism by which a C program obtains memory.

2. Assignment is the mechanism by which a C program stores a value in
a memory location.

In C, you must always think about where a variable is allocated.6 In 6 I would argue that this is the most
important fact to know about C and
what causes the vast majority of C bugs.
Watch out!

the code snippet above, i is what we call an automatic variable, because
we did not explictly say anything about the storage duration for i. For
now, keep in mind that, if you don’t explicitly ask C to change the kind
of storage, a variable’s storage duration is “automatic.”

I am intentionally leaving some of the terms here undefined because
memory management in C is a complex topic. We will discuss these
terms in detail when we cover memory management in C.

Arithmetic expressions
Like Java, C has a variety of infix arithmetic operators, as shown in ta-
ble 3.

The rules for these operators are much like the rules in Java. For ex-
ample, 3 / 4 equals 0 but 3 / 4.0 equals 0.75. If you don’t remember

A BRIEF OVERVIEW OF C 29

Operator Description Example Evaluates To
+ Unary plus +2 2
- Negation -2 -2
++ Preincrement i = 0; ++i; Returns 1, sets i to 1
-- Predecrement i = 0; --i; Returns -1, sets i to -1
++ Postincrement i = 0; i++; Returns 0, sets i to 1
-- Postdecrement i = 0; i--; Returns 0, sets i to -1

Table 4: C unary operators.

why, this would be a good time to brush up on your knowledge of inte-
ger and floating point data types.

C also has unary operators, as shown in table 4.

Primitive data types

C has a small set of data types that are referred to as primitive. Prim-
itive data types are data types that are defined by the language–you
cannot modify them. Furthermore, in C, primitive data types often cor-
respond closelywith the facilities afforded by specific hardware instruc-
tions. The primitives available in C are shown in Table 2.

Many of these primitives may also be modified using keywords like
signed or short to specify different number ranges or sizes.

Quite surprisingly, C traditionally does not have a built-in boolean
data type! In C, the int value 0 is used to represent false and any
other integer value represents true. This is often confusing to people
who come to C from more featureful languages, so for this class, I will
allow you to use a modern version of C. In C99 and later, the C Stan-
dard Library has a boolean data type that you can use. You will need to
#include <stdbool.h> to use it.

30

#include <stdbool.h>

int main() {
bool b = true;

}

clang uses C11 by default, so stdbool is available by default (yes,
confusingly C11 is newer than C99).

Note that there is no mention here about other types you often see
in Java like String and other complex data types like classes. C has no
strings and no classes. It does however, have two facilities for building
complex data types.

Structures
Complex data types (i.e., data types that allow a variable to store more
than one primitive value) inC are achievedusing a feature called a struc-
ture, or a struct for short.

A struct vaguely resembles a class in Java. For example,

struct point {
int x;
int y;

};

The above struct definition defines a new type called point that
stores two integers, one called x and another called y. Note that C re-
quires you to put a semicolon (;) after the struct definition.7 7 I always forget to do this!

To use our point, we first need to allocate storage in a variable:

struct point p;

Again, since we did not say anything “special” about the storage, p is
an automatic variable.

To assign values to p, we use the field access operator, ., as follows:

p.x = 3;
p.y = 4;

Note that, unlike Java classes, a struct does not have methods or a
constructor. It also does not have field access modifiers such as public,
private, and so on. It is simply a container for data.

Arrays
Arrays in C are similar to Java arrays in that they are a fixed-size data
structure that stores a sequence of elements, and they allow random-
access reads and writes.

A BRIEF OVERVIEW OF C 31

Here’s some code for allocating an array, assigning values to it, and
then reading and printing them back out.
/* Allocate, assign, read an array in C */
int arr[10];

for(int i = 0; i < 10; i++) {
arr[i] = i * 2; // store the value of i * 2 in the array at index i

}

for(int i = 0; i < 10; i++) {
printf("%d\n", arr[i]); // print the values out

}

Observe that the syntax for allocating an array in C is also a little
different than in Java.

Unfortunately, because C is not object-oriented like Java, working
with arrays is a tad trickier in some cases. Remember that C does not
have classes, so types do not have members. In Java, you can “ask” an
array how long it is by doing
/* Allocate array and get length in Java */
int[] arr = new int[10];
int len = arr.length;
System.out.println(len);

length here is a member function on the Java array data type. In C,
it is not simple to perform this operation because there are no member
functions. Instead, you need to either 1) remember the length you used
when you allocated the array, or 2) use the C sizeof operator.

Let’s look at the sizeof operator. The sizeof operator gives the
amount of storage, in bytes, required to store a value for a variable of
a given type. So the output of sizeof for an int array of size 10 is,
surprisingly:
/* Using sizeof in C */
int arr[10];
printf("\%lu\n", sizeof(arr)); // prints '40'

Why? Because an int is 4 bytes (on my machine). Storing 10 ints,
one after the other, takes up 10*4 bytes = 40 bytes.

This means that if we want to find out the number of elements in an
array, we need to do a little work:
/* Allocate array and get length in C */
int arr[10];
int len = sizeof(arr) / sizeof(int); // 40 / 4 = 10
printf("%lu\n", len);

32

Of course, we could have just saved the value 10 from when we allo-
cated the array.

Strings
C does not have a string data type. You might be wondering, then, how
on earth people write programs in C that have anything to do with text.

In C, we use arrays to represent strings. In most other languages,
strings are indeed represented using array “under the hood,” so this
isn’t dramatically different from the computer’s standpoint. Be aware
that the language is completely unaware of strings– from the compiler’s
perspective, they’re just arrays. Conventionally, however, what has be-
come known as the “C string” convention requires you to follow two
rules:

1. A C string is an array of characters.

2. Every C string must be NULL-terminated.

What does this mean? Think of an array:

The C string “awesome” is represented as

Notice that the arraymust be big enough to store theNULL character,
0, at the end. Without a terminating null character, a chararacter array isNOT
a C string!

The C Standard library comeswith a set of functions that makework-
ing with C strings a little less cumbersome. Be aware that if your strings
are notNULL-terminated, most of these functionswill misbehave.8 You 8 In fact, C string bugs are a major

source of security vulnerabilities in
software written in C. You should
never use the strcpy, strcat, and gets
functions. Most modern C compilers
will warn you to consider an alternative
if you do.

can use the C string functions with

A BRIEF OVERVIEW OF C 33

#include <string.h>

Remember that anything you do with strings in C must use these
functions. For example, the following expressions will probably not do
what you want:

char s1[8] = "awesome";
char s2[8] = "awesome";

bool b = s1 == s2; // always false
s2 = "not awesome?"; // cannot assign to s2; does not compile
s1 = s1 + "ish"; // + not defined on arrays; does not compile

Let’s look at a simple program that reads in your name and birthday,
if your birthday is today, tells you “happy birthday!”.

#include <stdio.h>
#include <string.h>
#include <time.h>

int main() {
char fname[100];
char month[20];
char day[20];
char month_today[20];
char day_today[20];

// today's date
time_t t = time(NULL);
struct tm *tm = localtime(&t);

// convert today's date to C strings
strftime(month_today, 20, "%B", tm);
strftime(day_today, 20, "%-e", tm);

// read name
printf("What is your first name? ");
fgets(fname, sizeof(fname), stdin);
fname[strcspn(fname, "\n")] = '\0';

// read birth month
printf("What month were you born? ");
fgets(month, sizeof(month), stdin);
month[strcspn(month, "\n")] = '\0';

// read birth day

34

printf("What day were you born? (1-31) ");
fgets(day, sizeof(day), stdin);
day[strcspn(day, "\n")] = '\0';

// compare dates
if (strncmp(month, month_today, 20) == 0 &&

strncmp(day, day_today, 20) == 0) {
printf("Happy birthday, %s!\n", fname);

}
}

There’s a lot you probably have not seen here before. That’s OK!We’ll
go through the important parts now.

At the beginning of the program, we allocate storage for a number
of C strings: the user’s first name, month and day of birth, and today’s
month and day.

We then compute today’s date using time and localtime, and we
convert the output of localtime to C strings using strftime. We are
not going to talk about these just yet, since they involve pointers, but if
you’re curious, look them up using man 3 time, etc.

After prompting the user for their name, we read what they type in
using the fgets call. fgets takes the destination array (“buffer” in C-
speak) as the first parameter, the maximum number of bytes to read (so
we use sizeof), andwhere wewant to read from (in this case, standard
input or stdin). You’ll notice the odd-looking line

fname[strcspn(fname, "\n")] = `\0`;

right after. What problem do you think this line solves? Try running the
above program with and without that line. What happens? How does
strcspn solve the problem?

Finally, we compare the dates. SinceCknowsnothing aboutC strings,
we cannot use a simple == to compare them. Instead, weuse the strncmp
function. strncmp takes two arrays and the maximum number of char-
acters to compare.

This program still leaves a lot to be desired. For example, it happily
accepts the following inputs:

What is your first name? Daniel
What month were you born? Octember
What day were you born? (1-31) 67

You can find documentation for all the C string functions by typing
man 3 string.

A BRIEF OVERVIEW OF C 35

String Literals
Literal values are fixed values supplied with the source code of a pro-
gram. For example.

double pi = 3.14159265359;

C has special support for string literals, since they are used often, just
as they are in Java. The following is also a literal.

char *msg = "Hello, everyone!";

(we will discuss the meaning of the type char * soon)
You can use string literals in much the same way that you use char-

acter arrays in C (in fact, they are character arrays), with one critical
exception: string literals are read only. That means, if you take the fol-
lowing program:

char *msg = "You all everybody!\n";
printf("\%s", msg);

and modify it (all we’re doing here is copying the string from its cur-
rent location back to its current location)

char *msg = "You all everybody!\n";
strcpy(msg, msg, strlen(msg));
printf("\%s", msg);

trying to run it will result in

Segmentation fault (core dumped)

Since string literals are usually stored in read only memory, you are
not allowed to update them. A segmentation fault is an error that occurs
when your program attempts to access memory with an operation that
is not allowed.

Printing, again
Let’s dig into the printf statement in a little more detail. As stated
before, printf is for printing.

printf takes at least one argument, but may take many more. The
first argument is called the format string. The format string must be a
string literal. For example,

printf("Hello world!\n");

36

Format Specifier Purpose
%c a single character
%d an int, printed as a decimal (base 10) number
%u an unsigned int (aka uint) printed as a decimal number
%f a floating point number
%s a C string
%x an int, printed as a hexadecimal (base 16) number
%o an int, printed as an octal (base 8) number
% a literal percent sign

Table 5: Some C format specifiers.

But printf is more powerful than this. printf can also perform
string interpolation, which will substitute other text in for placeholders
you put into the format string. The manner in which this substitution
is performed depends on the kind of placeholder you use. This is why
placeholders are called format specifiers.

For example.

char *name = "Dan";
printf("Hello %s!\n", name);

Here we’re asking printf to substitute the variable name where the
%s format specifier appears. You can put as many format specifiers in
the format string as you like, as long as you supply enough values to
printf to do the substitution.

char *name = "Dan";
char *town = "Williamstown";
char *state = "Amazing Commonwealth of Massachusetts";
printf("Hello %s, who lives in %s in the %s", name, town, state);

Choosing the appropriate format specifier depends on the 1) type
of the data you want to print, and 2) the manner in which you want it
printed. Above, we used %s, which is for printing C strings. A summary
of the most useful format specifiers is shown in Table 5.

You can also do a variety of useful formatting transformations, like
printing with a lower precision. For example,

double pi = 3.14159265359;
printf("\%.4f\n", pi);

prints 3.1416 to the screen. Note that the last digit is rounded up.
Rounding rules for floating point numbers follow the rules specified by
the IEEE 754 floating point standard.

See man 3 printf for more information.

A BRIEF OVERVIEW OF C 37

Control constructs
C has the same control constructs that Java has: for and while loops,
and if and else conditionals.

A for loop:

printf("I'm not listening to you ");
for(int i = 0; i < 1000; i++) {
printf("LA");

}
printf("\n");

A while loop:

char c = 'n';
while(c != 'y') {
printf("Are you annoyed yet? y/n ");
c = getchar();
fpurge(stdin);

}

(Think aboutwhy I am able to compare cwith 'y' even though I said
that C does not support comparison of strings. Also, what does fpurge
do?)

A conditional:

if (1 == 2) {
printf("Bad things are happening.");

} else {
printf("Well OK, then.");

}

Anything else?
I know what you’re thinking. “Please promise me that we’re done talk-
ing about C.” Fortunately, C really is a simple language, and the above
syntax is almost all you need to know. However, most C programs rely
heavily on pointers, and for that reason, we’ll spend more time talking
about using pointers effectively. Don’t be frightened! Pointers have a
reputation for being scary,9 but the reputation is undeserved. They are 9 Pointers themselves are not scary.

What’s scary are the bugs that an
undisciplined use of pointers can cause.actually quite simple, and you’ll see in our next reading.

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C
	Anything else?

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Reduction order
	Normal form

	Proof by Reduction
	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

