
Advanced F#

Here we cover some of the defining features of the F# programming lan-
guage.

Algebraic data types and pattern matching
Algebraic data types (ADTs) and pattern matching are two features
first widely used in the Hope34) programming language, which was 34 https://en.wikipedia.org/wiki/

Hope_(programming_languagedeveloped concurrently with ML. ADTs and pattern matching are like
chocolate and peanut butter: better together35 (this commercial is to- 35 https://www.youtube.com/watch?v=

hHPY5yoINMAtally ridiculous and worth the 30 seconds of your time.)
Algebraic data types are a way of concisely express hierarchies of

typeswithout inheritance. Inheritance is a feature from object-oriented pro-
gramming, which we will discuss later in the semester. If you already
happen to know what inheritance is, you can think of ADTs as its func-
tional equivalent. As you will see, they are in many ways much more
elegant and easy to reason about, although there is a big tradeoff when
it comes to large-scale software engineering projects.

Let’s create a data type that represents a small set of animals. We’d
like, at various points in our program, to be able to work generically
with animals, and then at other points, to be able to work specifically
with specific animals, like ducks and geese.

type Animal =
| Duck
| Goose
| Cow
| Human

The above is an algebraic data type. In F#, we call this kind of type
definition a discriminated union. In other ML variants, these are some-
times called union types or sum types. These terms mean the same thing.

What is the meaning of Duck or Cow? They are, in fact, constructors.
So if we want a Duck, we type Duck. Let’s try it in dotnet fsi:

https://en.wikipedia.org/wiki/Hope_(programming_language
https://en.wikipedia.org/wiki/Hope_(programming_language
https://en.wikipedia.org/wiki/Hope_(programming_language
https://www.youtube.com/watch?v=hHPY5yoINMA
https://www.youtube.com/watch?v=hHPY5yoINMA
https://www.youtube.com/watch?v=hHPY5yoINMA
https://www.youtube.com/watch?v=hHPY5yoINMA

188

> let donald = Duck;;
val donald : Animal = Duck

Likewise, if we want a Cow, we type:

> let ephelia = Cow;;
val ephelia : Animal = Cow

Notice that the types of donald and ephelia are, quite specifically,
Animals.

Let’s now make a function that takes an Animal and does the “right
thing” depending on the kind of animal.

let squeeze a =
match a with
| Duck -> "quack!"
| Goose -> "honk!"
| Cow -> "meeeeph!"
| Human -> "WHY ARE YOU SQUEEZING MEEEEEE????"

The match ... with expression tells F# that wewant to perform the
appropriate thing using pattern matching. Pattern matching is a feature
of many functional programming languages that let you concisely ex-
press conditional logic.

So if we squeeze ephelia, the function does the right thing:
> squeeze ephelia;;
val it : string = "meeeeph!"

Patternmatching is always type-safe. Supposewe forgot to put in the
case for Human. The F# compiler will report that we missed a case.

match a with
--------^

warning FS0025: Incomplete pattern matches on this expression. For example,
the value 'Human' may indicate a case not covered by the pattern(s).

Patternmatching also lets us deal conciselywith cases that don’tmat-
ter to us. For example, imagine that all we really care about is squeezing
Cows. We could write:

let squeeze a =
match a with
| Cow -> "meeeeph!"
| _ -> "complaint"

The _ indicates a default case that will only be exercised by an Animal

ADVANCED F# 189

that is not a Cow.

ADTs that store data

The ADTs we’ve seen so for are limited in their usefulness because they
don’t store any data. We can extend them to store any data thatwewant.

type LinkedList<'a> =
| Node of 'a * LinkedList<'a>
| Empty

The above is a complete definition for a linked list. Expressions of the
form 'a * 'b are tuples. So a 'a * LinkedList is a 2-tuple that stores
data of type 'a on the left and a reference to a LinkedList<'a> on the
right. You can have tuples of any arity in F#.

Also, observe that, we can also write types recursively. A Node stores
a reference to a LinkedList36. 36 If you feel comfortable with our notion

of algebraic data types so far, great! See
if you can modify our LinkedList<'a>
type to represent a binary tree. After all,
a binary tree really is just a linked list
with an extra reference...

Let’swrite a prettyprint function that, when given a LinkedList<'a>,
prints it out all pretty. Here is an imaginary example in dotnet fsi:

> let mylist = Node ("a", Node("b", Node("c", Empty)));;
val mylist: LinkedList<string> = Node ("a", Node ("b", Node ("c", Empty)))
> prettyprint mylist;;
val it: string = "[a, b, c]"

Below is a reasonable first attempt at making our fantasy come true:
let rec prettyprint ll =
match ll with
| Node(data, ll') -> data.ToString() + ", " + (prettyprint ll')
| Empty -> ""

Each case in our match expression, known as a pattern guard, ensures
that ll has the form specified on the left side before executing the right
side. When a case matches, data is bound to the given variables, in this
case, data and ll'. For example, the data stored in the given Node is
bound to the variable data; the tail of the list is bound to the variable
ll'.

Pattern guards are composed from deconstructors, which have the same
syntax and are essentially the inverse of constructors. For example, you
can construct a tuple and deconstruct it using the same syntax.

190

> let tup = (1, "hi");;
val tup : int * string = (1, "hi")

> let (a,b) = tup;;
val b : string = "hi"
val a : int = 1

Anyway, let’s try out our prettyprint function:
> prettyprint mylist;;
val it: string = "a, b, c, "
Hmm. Not quite. But with a little massaging, we can get this to work.

One approach is to define a helper function. Note that functional pro-
gramming languages let use define functions inside of function defini-
tions37. 37 If this sounds crazy to you ask your-

self: why not? Eventually you’ll see that
disallowing this behavior is actually the
crazy design choice. Nested function
definitions are very useful.

let prettyprint ll =
let rec pp ll =
match ll with
| Node(data, Empty) -> data.ToString()
| Node(data, ll') -> data.ToString() + ", " + (pp ll')
| Empty -> ""

"[" + (pp ll) + "]"

Notice that we made a number of changes to our original function.
First, we defined a helper function, pp, inside of our main prettyprint
function. Second, we called pp at the very end of prettyprint, and we
surround whatever it returns with square brackets. Finally, because we
want to omit the trailing comma, we have a special case: we check to see
that a node is the last node so that we can construct a special string for
that case. We have to check that case first, because the second case in
the above pattern match is more general. And finally, we kept the Empty
case at the end. You might be wondering why we do that given that we
check for emptiness in our first case. Well, consider the following kind
of list.

> let mylist2 = Empty;;
val mylist2: LinkedList<'a>

> prettyprint mylist2;;
val it: string = "[]"

In short, the above definition works for empty lists too.
I personally find the use of ADTs and patternmatching an refreshing

way to build software. Many concepts in computer science are simple

ADVANCED F# 191

and elegant in theory but difficult to implement in code in practice. F#
and other ML languages give us the tools to express simple concepts
simply.

Limitations
There are two things to note about the above definitions. First, note that
I am not able to write the following definition:

type Thing =
| A of char
| B of string
| C of A * B

This definition produces the following error:

| C of A * B
-------^

error FS0039: The type 'A' is not defined.

Although ADTs admit recursive definitions, that’s not what we’re look-
ing at here. Importantly, cases in an ADT are not data types. Instead,
A, B, and C are constructors for the one type called Thing. So we cannot
refer to A or B or C in our definition of Thing. We could instead write the
following:

type Thing =
| A of char
| B of string
| C of Thing * Thing

but that’s not quite the same since that lets a C store a C and maybe
that’s not what you want. To get that, we’d have to write,

type A = char
type B = string
type C = A * B
type Thing =
| A of A
| B of B
| C of C

and that all works although it’s a tad inelegant.
A second limitation is thatwe had to use the rec keyword somewhere

in our pp definition.

192

let rec pp ll =

Leaving out the rec produces the following error:

| Node(data, ll') -> data.ToString() + ", " + (pp ll')
---^^

error FS0039: The value or constructor 'pp' is not defined.

This error occurs because F# strictly adheres to the rules of the lambda
calculus38. We will talk more about the lambda calculus in the future. 38 For the curious, the reason is that F#

uses a “desugaring” approach to inter-
pret let expressions. An expression of
the form let z = U in V desugars to
the expression (λz.V)U. Well, if z is a
function name, it is not available to use
in the expression U because U is outside
the lambda abstraction. Adding the rec
keyword tells F# that the name of the
function should be available inside the
function body. In effect, a recursive let
is different than a regular let.

Equality and type checking
Type checking is the process of ensuring that the use of values is log-
ically consistent. F# can sometimes check at compile time whether two
values will ever be equal without having to inspect values.

F#’s type system is a little different than the kind you’ve seen before
in Java and C. Java and C use a form of types called a nominal type sys-
tem. In essence, a nominal type is simply a label. Nominal type checking,
therefore, boils down to ensuring that these labels match. For example,
the following C program fails to type check:

int i = 1;
char *c = i;

because i is an int and c is a char *, although because C is weakly
typed, this is only a warning and not a fatal compilation error:

program.c:3:9: warning: incompatible integer to pointer conversion
initializing 'char *' with an expression of type 'int'

[-Wint-conversion]
char *c = i;

^ ~

Java adds extra expressiveness to C’s nominal type system which al-
lows it to express subtypes (i.e., inheritance), which is why we say that
it has a nominal type system with subtyping. Subtyping essentially means
that, under some circumstances, some labels can be substituted for oth-
ers. Java also enforces types strongly, so the Java equivalent to the above
C program is a fatal compilation error.

F# uses a systemof structural typing. In this case, equality ismore than
just checking labels, although labels are at the “bottom” of the type sys-
tem. Structural type checking means that the type checker must prove,
inductively, that two expressions are equivalent because they yield the

ADVANCED F# 193

same structural type.
An example helps to clarify. For example,

> let a = 1;;
val a : int = 1

> let b = 1;;
val b : int = 1

> a = b;;
val it : bool = true

In this case, not only are the types for a and b equal, so are the values
(note that F# denotes equality using the = symbol, not the == symbol;
“not equal” is denoted with <>).

Neither a nor b have any “structure” and so the base case for struc-
tural type checking is nominal: we simply check that the labels match
(int equals int).

But how do we check the equality of something more complicated?
The following checks equality inductively:

> let c = (1,"hi");;
val c : int * string = (1, "hi")

> let d = (1,"hi");;
val d : int * string = (1, "hi")

> c = d;;
val it : bool = true

To see that (1,"hi") equals (1,"hi"), we need to know the type of
each expression. Both are 2-tuples. Thus, we know for two 2-tuples to
be equal, wemust check that both left sides are equal and that both right
sides are equal (inductive step). Both left sides are int and 1 equals 1
(base case). Both right sides are string and "hi" equals "hi" (base
case). Therefore, both 2-tuples are equal. Therefore (1,"hi") equals
(1,"hi").

Structrual type systems make equality comparisons very easy, and
they extend to what are normally “opaque” types in other languages,
like lists and arrays.

Lists
Lists are frequently utilized in functional programming. The original
functional programming language, LISP, demonstrated that lists can be

194

used as a fundamental unit of composition for many more complicated
data structures. F# also allows you to use lists in this manner, and be-
cause they are so important andwidely-used, they are even easier toma-
nipulate than in LISP.Althoughwewere able to define a LinkedList<'a>
type above, lists are so important to F# that it has special, built-in syntax
to support them.

For example, the following lets us define a list using list literal syntax
in F#:

let xs = [1; 2; 3; 4;]

We can also perform a variety of operations on lists easily:

> let xs = [1; 2; 3; 4;];;
val xs : int list = [1; 2; 3; 4]

> List.head xs;;
val it : int = 1

> List.tail xs;;
val it : int list = [2; 3; 4]

> let xs' = 0 :: xs;;
val xs' : int list = [0; 1; 2; 3; 4]

> List.length xs';;
val it : int = 5
> List.append xs' xs';;
val it : int list = [0; 1; 2; 3; 4; 0; 1; 2; 3; 4]

> List.rev xs';;
val it : int list = [4; 3; 2; 1; 0]

> List.sum xs;;
val it : int = 10

> List.map (fun x -> x - x) ;;
val it : (int list -> int list) = <fun:it@60-6>

> List.fold (fun acc x -> acc + x) 0 xs;; // this is fold left
val it : int = 10

ADVANCED F# 195

> List.foldBack (fun x acc -> acc + x.ToString()) xs "";; // fold right
val it : string = "4321"

> xs' = xs';;
val it : bool = true

> xs = xs';;
val it : bool = false

> let ys = [0; 1; 2; 3; 4];;
val ys : int list = [0; 1; 2; 3; 4]

> xs' = ys;;
val it : bool = true

Notice that we were able to compare two lists simply, using =. This
is possible because of F#’s structural type system. We can even pattern-
match on lists, which is incredibly useful for functions that recurse on
lists:

let rec list_length xs =
match xs with
| [] -> 0
| x::xs' -> 1 + list_length xs'

where [] or nil represents the empty list and :: means cons.
> list_length xs;;
val it : int = 4

The complete documentation on F# lists is available online39. 39 https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/lists

Nonetheless, F# is a pragmatic language, and as a matter of pragma-
tism, we should probably recognize that lists have undesirable perfor-
mance properties for many applications, particularly numerical com-
puting. For many applications, richer data types are desirable. F# has
these too.

Arrays
Lists have O(n) performance for random-access. In other words, in the
worst case, the cost of accessing an element is the cost of traversing the
entire list. Arrays have much better performance for random-access:
O(1). In otherwords, theworst case performance for arrays is a constant
time, or the amount of time it takes to execute a single operation.

The following lets us define an array using array literal syntax in F#:

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/lists

196

let arr = [|1; 2; 3; 4;|]

We can also perform a variety of operations on arrays easily:

> let arr = [|1; 2; 3; 4;|];;
val arr : int [] = [|1; 2; 3; 4|]

> let i = arr.[3];;
val i : int = 4

> Array.length arr;;
val it : int = 4

> Array.rev arr;;
val it : int [] = [|4; 3; 2; 1|]

> Array.filter (fun x -> x > 2) arr;;
val it : int [] = [|3; 4|]

> arr.[0..1];;
val it : int [] = [|1; 2|]

> arr.[2..];;
val it : int [] = [|3; 4|]

> arr.[..2];;
val it : int [] = [|1; 2; 3|]

> Array.init 10 (fun i -> i * i);;
val it : int [] = [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81|]

> Array.sum (Array.init 10 (fun i -> i * i));;
val it : int = 285

> Array.map (fun x -> x + 1) arr;;
val it : int [] = [|2; 3; 4; 5|]

> Array.fold (fun acc x -> acc + x) 0 arr;; // this is fold left
val it : int = 10

> Array.foldBack (fun x acc -> acc + x) arr 0;; // this is fold right
val it : int = 10

> let arr2 = [|1; 2; 3; 4;|];;
val arr2 : int [] = [|1; 2; 3; 4|]

> arr = arr2;;
val it : bool = true

Notice that we were able to compare two arrays simply, using =. This

ADVANCED F# 197

is possible because of F#’s structural type system.
The complete documentation on F# arrays is available online40. 40 https://docs.microsoft.

com/en-us/dotnet/fsharp/
language-reference/arrays

Other types
F#hasmanyother types, including Tuple, Sequence, Map, Option, classes,
interfaces, and abstract classes, and many others. The latter three types
are object oriented features of F#. Please do not use classes, interfaces,
or abstract classes unless I ask you to do so.

The complete F# language reference is available online41. I encourage 41 https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/

you to refer to it often as it is thorough and quite easy to read.

Conditionals
if/else expressions look a bit like their counterparts in Python:

if x > 0 then
1

else
2

Of course, since conditionals are expressions in F#, you can also do
neat tricks like use them to conditionally assign values, much like how
you might use the ternary operator (a ? b : c) in C:

let y = if x > 0 then
1

else
2

Indentation is important for conditionals. Note that the body of the
true and false clauses must be indented past the start of the if expres-
sion.

Loops
While F# has looping constructs, for and while, you should not use
them in this class. Instead, you should use map, fold, and recursion
instead.

The following table provides a handy guide for deciding which con-
struct to use in F# when your brain tells you that you need to use a loop.

Recursion instead of while

Let’s start with recursion to solve problems. One nice thing about a
while loop is that you don’t need to know how many times your pro-

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/arrays
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/

198

Problem Java F#
Do something until a condition is satisfied while Write a recursive function and make the condition a base case.
Do something for a bounded number of times for Write a recursive function and make the bound a base case.
Convert every element of a collection into something else for or foreach map
Accumulate a value for, foreach, or while fold
Convert a recursive data structure into another data structure Recursive function Recursive function or fold

gram needs to repeat itself until it is done computing a value. For ex-
ample, when doing a membership query in an unsorted linked list in
C (e.g., “is 4 in the list?”), you can use a while loop to simply continue
getting the next element until it is found.

bool contains(listnode *xs, int x) {
while (xs != null) {
if (xs->head == x) {
return true;

} else {
xs = xs->tail;

}
}
return false;

}

What characterizes problems like this is that there is no obvious bound
on the loop before we find the element we’re looking for. We solve this
class of problems in functional programming with recursion.42 42 Remember that recursive function

definitions must use let rec.
let rec contains xs x =
match xs with
| [] -> false
| y::ys ->
if x = y then
true

else
contains ys x

This particular solution pattern matches on the list to deconstruct it
into a head (y) and a tail (ys), but you could also explicitly call List.head
and List.tail if you wanted.

You might argue that this is a silly example because we know that
there can be no more comparisons than the length of the list. That’s
true. But there are other problems where you actually don’t know at all,
and the same pattern applies. For example, what if we wanted to run
a little experiment: how many times do we need to flip a coin before a
heads comes up? The outcome is determined by the laws of probability.
It probably won’t take many coin flips for heads to come up—in fact, we

ADVANCED F# 199

know that we have a 50% chance on the very first try—but it could take a
very long time. There’s a nonzero probability that it could take a trillion
coin flips.

let rec num_tries_until_match(r: System.Random)(n: int)(i: int)(e: int) =
let rn = r.Next(n)
if rn = e then
i

else
num_tries_until_match r n (i + 1) e

Where n is the number of “sides” of our coin (or die, or whatever),
i is the count so far, and e is the value we’re looking for. Let’s say that,
when n = 2, then when e = 0 that’s heads and when e = 1 that’s tails.
If we call this a few times, you can see that the answer can vary quite a
bit:

> let r = System.Random();;
val r : System.Random

> num_tries_until_match r 2 1 0;;
val it : int = 3

> num_tries_until_match r 2 1 0;;
val it : int = 1

> num_tries_until_match r 2 1 0;;
val it : int = 2

> num_tries_until_match r 2 1 0;;
val it : int = 4

> num_tries_until_match r 2 1 0;;
val it : int = 5

Map

On the other hand, many problems do exhibit bounded iteration. For
example, if you want to convert every number in a list into a string, you
know exactly how many you need to do: whatever the length of the list
is. This is what map is for.

200

> List.map (fun x -> x.ToString()) [11;22;33;44];;
val it : string list = ["11"; "22"; "33"; "44"]

Note that the type of the output need not be the type of the input.
Here, we convert int values into string values.

Let’s look at the function definition for List.map:

('a -> 'b) -> 'a list -> 'b list

We’ll step through, bit by bit. The parens tell us that the first argu-
ment is a 'a -> 'b. Right away, because it contains an ->, we know that
it is a function. What kind of function? A function from some unknown
type 'a to some other unknown type 'b. Now, it is entirely plausible that 'a
and 'b are the same type (e.g., int). But what this type definition tells
us is that they don’t have to be. We call this first parameter the mapping
function. It “converts” or “maps” a given value to another value.

Next parameter, 'a list. This parameter is the set of inputs, specif-
ically a list in this case.

Finally, the last parameter, 'b list. This last parameter is the type
of the output. This should make intuitive sense, because if you call the
mapping function on each element of a list of 'as, you will get a get a
list of 'bs.

Map has a few interesting properties. For starters, if the mapping
function 'a -> 'b always terminates, then map always terminates. For
anybody who has ever accidentally written a loop that doesn’t termi-
nate, this is a nice feature! Second, notice that each call of the mapping
function only depends on one of the values in the list. In fact, each call of
the function is totally independent from every other call. Problems that
have this structure are called embarassingly parallel, because it takes no
work at all to actually do the computation in parallel. In fact, F# makes
this almost absurdly easy to do, although we cannot do it with lists (for
hopefully obvious reasons... think about this a bit if you don’t know
why):

> Array.map (fun x -> x.ToString()) [|11;22;33;44|];;
val it : string [] = [|"11"; "22"; "33"; "44"|]

> Array.Parallel.map (fun x -> x.ToString()) [|11;22;33;44|];;
val it : string [] = [|"11"; "22"; "33"; "44"|]

Note that it is not always faster to do things in parallel! In this case,
because our list is small, the serial version is actually faster.

ADVANCED F# 201

> let timeit (f: int[] -> string[])(input: int[]) =
- let sw = System.Diagnostics.Stopwatch.StartNew()
- f input |> ignore
- sw.ElapsedTicks
- ;;
val timeit : f:(int [] -> string []) -> input:int [] -> int64

> let input = [|11;22;33;44|];;
val input : int [] = [|11; 22; 33; 44|]

> timeit (fun xs -> Array.map (fun x -> x.ToString()) xs) input;;
val it : int64 = 5657L

> timeit (fun xs -> Array.Parallel.map (fun x -> x.ToString()) xs) input;;
val it : int64 = 7296L

Fold
Folding is useful anytime you want to accumulate a value. This is, of
course, useful in scenarios like the following. Here, we multiply the
numbers 1 through 7 together.

> let product = List.fold (fun acc x -> acc * x) 1 [1;2;3;4;5;6;7];;
val product : int = 5040

Let’s look at fold’s type signature:

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

The first parameter is a function of two values, 'a and 'b, which re-
turns a 'a. In our fold above, that function, which we call the folding
function, multiplies those two values together. The thing to remember
is that the first parameter to our folding function is the accumulator: it’s
where we store the result of the operation from one iteration of fold to
the next. The second parameter to the folding function is the element,
which is taken from the list (we’ll get to that in a second).

The second parameter to fold is the initial value of the accumulator.
Since we want to multiply, in this case, we set it to 1. The last parameter
to fold is the list. This is where the folding function’s 'b parameter
comes from. Finally, the return value is a 'a, because that’s the type
of our accumulator. When there are no more elements in the list, the
accumulator is simply returned.

Here’s another example, where we convert strings into numbers and
sum them:

202

> List.fold (fun acc x -> acc + int x) 0 ["1";"2";"3";"4"];;
val it : int = 10

fold is an incredibly powerful function. It is not limited to lists. You
can fold arrays, trees, graphs, etc. In fact, you can implement map us-
ing fold (try challenging yourself to figure it out). But a consequence
of this power, which is the ability to make each step of a computation
interdependent, is that it is no longer embarassingly parallel. A great
deal of research in computer science has been devoted toward finding
just enough structure in certain problems to parallelize special cases of
fold. In general, it’s impossible.

The particular fold we discuss here is technically “fold left.” The
term “left” refers to the side of the input sequence from which we take
elements. Folding “right” takes elements from the end instead of the
beginning.

By the way, in LISP, the original functional programming language,
fold is called reduce. When you pair mapping and folding together,
you get a form of computation called map-reduce. This is where the
term came from that inspired Google’s MapReduce framework, which
is a platform for fault-tolerant, massively parallel computation.

Other important features
F# has essentially every feature that a modern language like Java has, so
there are too many features to discuss in this reading. However, there
are a few that are worth a mention.

Raising Exceptions
You can define an exception in F# like:

exception MyError of string

and you can throw it like:

raise (MyError("Error message"))

F# also has a “lightweight” syntax that I use frequently:

failwith "something bad happened!"

Runtime exceptions are more useful in F# than they are in ordinary

ADVANCED F# 203

languages. Because F# is functional and strongly-typed, sometimes the
type checker gets in the way. One very useful trick that you can use as
your “stub out” a method is to use failwith to make the type checker
temporarily go away.

let rec prettyprint e =
match e with
| Variable(c) -> c.ToString()
| Abstraction(v,e') -> failwith "TODO1"
| Application(e', e'') -> failwith "TODO2"

I use this trick frequently, although you should be aware that doing
so trades a compile-time error for a runtime one!

Catching Exceptions
You can catch exceptionsing using F#’s try ... with syntax,

try
prettyprint (Abstraction('x', Variable('x')))

with
| MyError(msg) -> "oops: " + msg

which returns the string value "oops: TODO1".

Option types
Like Java and C#, you can store null in values.

let x = null

However, the use of null is nowwidely regarded as amistake in com-
puter science. Tony Hoare (winner of the Turing Award), and inventor
of null, called it a “billion-dollar mistake”:

I call it my billion-dollarmistake. It was the invention of the null reference
in 1965. At that time, I was designing the first comprehensive type sys-
tem for references in an object oriented language (ALGOL W). My goal
was to ensure that all use of references should be absolutely safe, with
checking performed automatically by the compiler. But I couldn’t resist
the temptation to put in a null reference, simply because it was so easy
to implement. This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion dollars of pain and
damage in the last forty years.

Instead, in F#, we prefer the type-safe option type. Let’s write a func-
tion that uses option.

204

let onedivx x =
if x = 0.0 then
None

else
Some (1.0 / x)

Now when we use onedivx, we get back an option type:

> onedivx 0.0;;
val it : float option = None

> onedivx 1.1;;
val it : float option = Some 0.9090909091

option gives us a way to signal the failure of a computation in a type-
safe manner. In fact, the type-checker forces us to deal with the error:

> (onedivx 0.0) + 2.2;;

(onedivx 0.0) + 2.2;;
----------------^^^

error FS0001: The type 'float' does not match the type 'float option'

To use the return value, we must “unwrap” it first, using pattern
matching.

> match onedivx 0.0 with
- | Some res -> printfn "%f" res
- | None -> printfn "Oh, dear!"
- ;;
Oh, dear!
val it : unit = ()

Forward pipe
Forward pipe, |>, is my single favorite feature of F#. It allows you to
build sophisticated data-processing pipelines easily. |> passes the re-
sult of the left side to the function on the right side. For example, instead
of writing:

List.map (fun x -> x + 1) [1;2;3;4]

you can write:

ADVANCED F# 205

[1;2;3;4] |> List.map (fun x -> x + 1)

I find the latter easier to read. But the benefit really becomes appar-
ent when you need to do multiple operations.

> [1;2;3;4]
- |> List.map (fun x -> x + 1)
- |> List.zip [5;6;7;8]
- |> List.filter (fun (_,y) -> y > 3)
- |> List.fold (fun acc (x,y) -> acc + x * y) 0
- ;;
val it : int = 68

Cool, huh?

	Visualizing Programs
	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

	How to Fix a Motorcycle
	C: A Language Built Around a Memory Model
	Storage Duration
	Requesting local storage
	Requesting allocated storage
	When should I use allocated storage?

	Passing Pointers by Value
	Introduction to the Lambda Calculus, Part 1
	Introduction
	The lambda calculus as a programming language

	Grammars and Parse Trees
	Grammars
	Derivations
	Parse Trees and Ambiguity
	Example 4.1
	Parsing and Precedence
	Example 4.2

	Introduction to the Lambda Calculus, Part 2
	Normal form
	Reduction order

	The Linked List: An Elegant, Recursive Data Structure
	Parts of a list
	Fundamental list operations
	Asymptotic complexity

	LISP
	A Brief Introduction to F#
	What is F#?
	Modularity
	Compiling and running your project
	Code editors

	Why Functional Programming Matters
	A Slightly Longer Introduction to F#
	History
	Compiling using dotnet
	MSBuild
	``This means something. This is important.'' Understanding code you wrote.
	A few more features

	Advanced F#
	Other important features

	Parser Combinators
	An example: parsing English sentences
	Performance
	Parsing theory is good, but hard to apply in practice

	Beating the Averages
	The Rise of Worse is Better
	Unit Testing in F#
	Running example
	MsTest
	.NET solutions
	Conclusion

	Appendix A: Introduction to LaTeX
	Pronouncing LaTeX
	Compiling a LaTeX document
	Dealing with compiler errors
	Mathematical formulas
	Formatting code

	Appendix B: Original SML Specification
	Appendix C: Branching in git
	tl;dr Version
	Tutorial

