
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 21: Object-oriented programming

Topics

Object-oriented programming

Your to-dos

1. Last quiz, due tomorrow, 12/7.
2. Please bring laptop/tablet next class to fill out

student course surveys.
3. Project checkpoint #3, “mostly working,” due

Sunday 12/11.
4. Final project due Sunday 12/18.

Object-Oriented Programming

Programming in the small

Programming in the large

What languages?

Java C++

Ruby C++, Python

Java

Object-Oriented Programming

• OOP is both a language design philosophy and a way

of working (OO design).

• OOP is possibly the most impactful development in the

history of programming languages.

What OOP is Not
• Many, many instructors introduce OOP as a way of

naturally simulating the world.

• This misses the point of OOP entirely!

What OOP is
• Object-oriented programming is actually about scalability.
• Scalability in codebase size was the original motivation.
• But OO philosophy also has had a big effect on the

scalability of programming teams.

small programs big programs

small teams

big teams

class projects
personal project

Google

Fortnite

Ruby on Rails

ML apps

Minecraft

History
• First language recognizable as OO:

Simula-67.

• Developed by Kristen Nygaard and others at

the Norwegian Computing Center.

• Grew out of frustrations using ALGOL.

• Original plan was to add an “object” library,

inspired by C.A.R. Hoare’s “record classes”.

• It was eventually realized that objects were

a fundamentally different way of structuring

a program; Simula became its own

language.

History

• But Simula-67 was not the most influential

OO language.

• That language was…

Smalltalk

Alan Kay
Essentially invented
the laptop/tablet
(“Dynabook”)

Turing Award

Dan Ingalls
Essentially invented
object oriented
programming

Grace Murray
Hopper Award

Adele Goldberg
Essentially invented
graphical user
interfaces

ACM Software
Systems Award

• First mainstream OO success: Smalltalk

• Developed by Alan Kay, Dan Ingalls, and Adele Goldberg at Xerox

PARC and later Apple Computer.

• Used to implement major components of the groundbreaking

Xerox Alto computer: OS, compiler, GUI, applications.

• Highly influential. E.g., C++, Java, Ruby, etc.

Smalltalk

And they showed me really three things. But I was so

blinded by the first one I didn't even really see the other two.

One of the things they showed me was

object orienting programming they

showed me that but I didn't even see

that. The other one they showed me

was a networked computer system…

they had over a hundred Alto computers

all networked using email etc., etc. I

didn't even see that. I was so blinded by

the first thing they showed me which

was the graphical user interface… within you

know ten minutes it was obvious to me that all computers

would work like this some day.

Smalltalk Smalltalk

OK, really, what is OO?

Object-oriented programming is composed primarily of

four key language features:

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance

Purpose: polymorphism at scale Purpose: polymorphism at scale

OK, really, what is OO?

Object-oriented programming is composed primarily of

four key language features:

1. Abstraction

2. Dynamic dispatch
3. Subtyping

4. Inheritance
In my mind, this is

OO’s killer feature.

Object-oriented programming is a
solution to complexity

(video)

(code)

Dynamic Dispatch

(the secret to understanding how
Java, Python, Ruby, etc. work)

Dynamic Dispatch

x.method(arg1,…)

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object selector

message{

Dynamic Dispatch
• Dynamic dispatch is an algorithm for finding a the

implementation for a given selector (i.e., method).

@value

…

Number object Number class Template

@value

…

Method dictionary
getValue

squee

code
code

Recap & Next Class

This lecture:

Next lecture:
Student Course Surveys

How to give a good technical talk

OOP

