CSCI 334:
Principles of Programming Languages
Lecture 20: Type inference
Instructor: Dan Barowy
Williams

| Topics |
| :---: | :---: |
| Type inference |
| |
| |

Your to-dos

1. Project checkpoint \#2, due Sunday 12/4.
2. Last quiz, due Wednesday $12 / 7$.

Type checking \& type inference
Cool things made possible by the lambda calculus!

type inference

Not everybody loves this part of PL.
I hope that you can appreciate the absence of magic.

A refresher on "curried" expressions

```
let f(a: int, b: int, c: char) : float = ...
    f is a:int * b:int * c:char -> float
let f(a: int) (b: int) (c: char) : float = ...
    f is int -> int -> char -> float
            let f a b c = .
            f = \lambdaa.\lambdab.\lambdac...
```

Type checking
(or, "how does my compiler know that my expression is wrong?")
let $f(x: i n t)$: int $=$ "hello" $+x$
let $\mathrm{f}(\mathrm{x}:$ int $)$: int = "hello" +x ; ;
----------------------------------1
stdin(1,32): error FSO001: The type 'int' does not match the type 'string'

Type checking

step 1: convert into lambda form

```
let f(x:int) : int = "hello" + x
f = \lambdax."hello " + x convert into \lambda expression
f = \lambdax.(+ "hello " x) assume + = \lambdax.\lambday.(x+y)
```

The purpose of this step is to make all of the parts of an expression clear

Type checking

step 4: check that types are used consistently

1. Start at the leaves
2. Do type mismatches arise?
int \rightarrow int \rightarrow int @ string YES, TYPE ERROR
Yes = error
No = ok
3. if error, stop and report first mismatch

Type checking

step 3: label parse tree with types

```
read ":" as "has type"
```


Type inference
notice that we had a typed expression

```
let f(x:int) : int = "hello " + x
```

what if, instead, we had

$$
\text { let } f(x)=\text { "hello" }+x
$$

?

Hinley-Milner algorithm

- Hindley and Milner invented algorithm independently.
- Infers types from known data types and operations used.
- Depends on a step called "unification".
- I will demonstrate informal method for unification; works for small examples

Robin Milner

Hinley-Milner algorithm

Has three main phases:

1. Assign known types to each subexpression
2. Generate type constraints based on rules of λ calculus:
a. Abstraction constraints
b. Application constraints
3. Solve type constraints using unification.

Type inference

step 2: label parse tree with known/unknown types

$$
\begin{aligned}
& \text { let } \mathrm{f}(\mathrm{x})=5+\mathrm{x} \\
& \mathrm{f}=\lambda \mathrm{x} \cdot((+5) \mathrm{x})
\end{aligned}
$$

Type inference

it is often helpful to have types in tabular form

Type inference

step 3: generate constraints
<expr> : := <var> variable
| $\lambda<$ var>.<expr> abstraction
| <expr><expr> function application

Three rules, each corresponding to a kind of λ expression.

3.3. application constraint

<expr><expr>
"right triangle rule"

Constraint: If the type of <expr1> is α and the type of <expr $2>$ is β, and the type of $₫$ is γ, then the constraint is $\alpha=\beta \rightarrow \gamma$.

constraints summary

Abstraction: If the type of <var> is a and the type of <expr> is b, and the type of λ is c, then the constraint is $c=a \rightarrow b$.

Application: If the type of <expr1> is a and the type of <expr2> is b, and the type of $@$ is c, then the constraint is $a=b \rightarrow c$.

Type inference
step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
(+5)	r	int \rightarrow int \rightarrow int $=$ int \rightarrow
x	s	n / a
$(+5) \mathrm{x}$	t	$r=s \rightarrow t$
$\lambda \mathrm{x} \cdot((+5) \mathrm{x})$	u	$u=s \rightarrow t$

Start with the topmost unknown. What do we know about r ?

```
int -> int -> int = int -> r
r = int }->\mathrm{ int
```


Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
(+5)	$r=i n t \rightarrow$ int	int ${ }_{\text {a }}$ int \rightarrow int $=i n t \rightarrow i n t \rightarrow i n t$
x	$s=i n t$	n / a
$(+5) x$	$t=i n t$	int \rightarrow int $=$ int \rightarrow int
入x. (+ 5) x)	$\mathrm{u}=$ int \rightarrow int	int \rightarrow int $=$ int \rightarrow int

Done when there is nothing left to do.
Sometimes unknown types remain.
An unknown type means that the function is polymorphic.

Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n / a
5	int	n / a
$(+5)$	$r=$ int \rightarrow int	int \rightarrow int \rightarrow int $=$ int \rightarrow int \rightarrow int
x	$s=$ int	n / a
$(+5) x$	$t=$ int	int \rightarrow int $=$ int \rightarrow int
$\lambda x .((+5) x)$	$u=$ int \rightarrow int	$u=$ int \rightarrow int

Eliminate u from constraint.

Completed type inference

2. label with type variables

```
let apply f x = f x
apply = \lambdaf.\lambdax.f x
```


1. convert to λ expression

```
let apply f x = f x
```

apply $=\lambda f . \lambda x . f \quad x$

3. generate constraints

5. rename variables in alpha order

Is this the right answer?

val apply

```
    : f:('a -> 'b)
```

 \(\rightarrow x\)
 \(x:\) 'a
 Lookin' good!

activity
let $f \quad g x=g \quad\left(\begin{array}{ll}g & x\end{array}\right)$

Recap \& Next Class

Today:
Type inference

Next class:
Object Oriented Programming

