
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 19: Scope & Testing

Outline

What is scope?
What are the kinds?
Why is it important?
How do they work?
Unit testing

Your to-dos

1. No quiz this week.
2. Project checkpoint #2, due Sunday 12/4
3. If you found checkpoint #1 difficult, come see

me! Office hours today 2:30-3:30pm; Fri 11-1pm.

Final project timeline

1. Minimal working version, due Sun 11/27
2. Draft language specification, due Sun 12/4
3. Mostly working version, due Sun 12/11
4. Project + video presentation, due Sun 12/18

Scope

Recall that a variable is a named placeholder for a value in
an expression. Scope is a set of rules that determines what
value is returned when a variable is used in an expression.

If your language does not have functions (or blocks, like
for loops), scope rules are mostly irrelevant.

Kinds

There are two main kinds of scope.

• Lexical scope
• Dynamic scope

Both definitions depend on a notion of time.

• Lexical scope depends on compile time.
• Dynamic scope depends on run time.

Importance

Scope rules are used to determine:

• Which values are returned.
• When garbage collection is run.

Scope rules can have an impact on whether programmers
write buggy programs. Here are some languages with
surprising scope rules:

• JavaScript
• R
• LISP (the original)
• Bash
• Mathematica

Dynamic scope

Dynamic scope is a rule that finds the most recent value
of a given variable in a program’s execution (i.e, at run
time).

Lexical scope

Lexical scope is a rule that uses the lexically closest
value of a variable at the time the use was defined (i.e., at
compile time).

Kinds

“Surprising” languages either have a flawed/complicated
version of lexical scope (e.g., R, JavaScript) or use dynamic
scope (the original LISP, most shells, Mathematica).

https://stackoverflow.com/a/500459/480764

Want to be a front-end developer? You should probably
know these rules:

Perl Examples
local $x = 10;

sub f

{

 print $x."\n";

}

sub g

{

 local $x = 20;

 f();

}

g();

What is printed?

my $x = 10;

sub f

{

 print $x."\n";

}

sub g

{

 my $x = 20;

 f();

}

g();

Which one is dynamic and which one is lexical?

Perl Examples
local $x = 10;

sub f

{

 print $x."\n";

}

sub g

{

 local $x = 20;

 f();

}

g();

Lexical scopeDynamic scope

my $x = 10;

sub f

{

 print $x."\n";

}

sub g

{

 my $x = 20;

 f();

}

g();

(local keyword) (my keyword)

How do they work?

(whiteboard)

Unit testing

Unit testing is a quality-assurance method designed to find
bugs before software ships. A unit test consists of test
code written to exercise the functionality of a unit of code in
isolation. For example, in functional code, a unit is often
thought of as a module, function, or primitive operation.

Note that unit testing is usually not sufficient to determine
the correctness of code!

Popular Unit Test Frameworks

Java: JUnit

.NET: MsTest or NUnit

Python: unittest

Ruby: rspec or cucumber

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Tons more!

(demo)

Recap & Next Class

This lecture:

Next lecture:

Type inference

Scope

Unit testing

