CSCI 334:
Principles of Programming Languages

Lecture 16: Program interpretation

Instructor: Dan Barowy

Williams

Topics

Program interpretation
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Your to-dos

. Quiz, due Wednesday 11/16.
. Project checkpoint #1, due Sunday 11/27

(partner lab)
(optional) extra office hours to meet about
project proposals
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Final project timeline

Minimal working version, due Sun 11/27
Mostly working version, due Sun 12/4
Language specification doc, due Sun 12/11
Project + video presentation, due Sun 12/18
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int main() {..}
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Program Interpreter




Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly interprets code, often in the form of an abstract
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Eager evaluation: usually a post-order traversal of an AST.
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Eager evaluation: usually a post-order traversal of an AST.

This traversal is conveniently written as a recursive function.
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<expr> ::= (plus <expr> <expr>*)
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Recap & Next Class

Today:

Program interpretation

Next class:
Testing




