CSCI 334:
Principles of Programming Languages

Lecture 16: Program interpretation

Instructor: Dan Barowy

Williams

Topics

Program interpretation

N —

Your to-dos

. Quiz, due Wednesday 11/16.
. Project checkpoint #1, due Sunday 11/27

(partner lab)
(optional) extra office hours to meet about
project proposals

oD~

Final project timeline

Minimal working version, due Sun 11/27
Mostly working version, due Sun 12/4
Language specification doc, due Sun 12/11
Project + video presentation, due Sun 12/18

What is a programming language?

What is a programming language?

What is a programming language?

orge | 3401 Finance

Harry | 3415 | Finance
George | 3401 Finance

—
»

Name | Empld | DeptName

int main() {..}

What is a programming language?

(plus 1 2)

What is a programming language?

_evaluator|

L

Program Interpreter

Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly interprets code, often in the form of an abstract

Example

372 + 1

R ©

syntax tree. © 0
Example Example
372 + 1 322 + 1

“

/0\

o
© 0

Eager evaluation: usually a post-order traversal of an AST.

/0\0

2]

NN

Eager evaluation: usually a post-order traversal of an AST.

Example

372 +1

A

o
\QAG

Eager evaluation: usually a post-order traversal of an AST.

Example
3722 + 1

\‘Af\"
(3

(2]

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

/0\

3 o
OAQ“’

Eager evaluation: usually a post-order traversal of an AST.

Example
372 + 1

o

(3]

2]

Eager evaluation: usually a post-order traversal of an AST.

Example

372 +1

N

P
© 0

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

YaW%

3 2 o

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

“
A
© 0

Eager evaluation: usually a post-order traversal of an AST.

Example

372 + 1

10
9A1
310\20

© 0

Eager evaluation: usually a post-order traversal of an AST.

This traversal is conveniently written as a recursive function.

pluslang

<expr> ::= (plus <expr> <expr>*)
| neN

(plus 1 2)

(plus 1 2 3 4 5)

(code)

Recap & Next Class

Today:

Program interpretation

Next class:
Testing

