
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 15: Parsing, part 2

Topics

Using parser combinators

Your to-dos

1. Quiz, due Wednesday 11/8.
2. Lab 9, due Sunday 11/13 (partner lab) Parser Combinators

Parser Combinators
• A kind of recursive decent parser.

• A recursive descent parser is a parser built from
a set of mutually recursive procedures where
each such procedure usually implements one of
the productions of the grammar.

• Recursive descent parsers are “top-down,”
meaning that they recognize sentences by
expanding nonterminals, starting from the start
symbol.

• “Bottom-up” parsers start with terminal symbols
and work in the opposite direction, often utilizing
dynamic programming… these are more common
in practice!

Basic Primitives

• Input 
type Input = string * int * bool

• Output 
type Outcome<'a> =

| Success of result: 'a * remaining: Input

| Failure of fail_pos: int * rule: String

Basic Primitives

• A parser is 
type Parser<'a> = Input -> Outcome<‘a>

• Keep in mind: a parser is a function.

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

• Parsers that combine parsers. Correspond with

grammar non-terminals. Also called “combining

forms.”

• For flexibility, you can also have parsers that do both.

A very simple terminal parser

• To parse a given char 
pchar(c: char) : Parser<char>

• Notice that the generic type inside <brackets> is the return

type of the parser.

• So pchar returns a parser.

• When it is run with an input, it returns an Outcome<char>.

How to use it

• (pchar ‘z’) input

• input must be “prepared” first.

• > let input = "zoo";;

val input : string = “zoo"

• > let i = prepare input;;

val i : Input = ("zoo", true)

• > (pchar 'z') i;;

val it : Outcome<char> = Success ('z',("oo", true))

A very simple combining parser

• To parse two things in sequence: 
pseq : p1:Parser<‘a> -> p2:Parser<‘b> ->

f:('a * 'b -> 'c) -> Parser<‘c>

• It looks more complicated than it is.

• Let’s look at each part.

A very simple combining parser

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p1 is a parser.

A very simple combining parser

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p2 is a parser.

A very simple combining parser

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• f is a function that takes the result of p1 and p2 and does

something with it. That something is up to you.

How to use it

• pseq (pchar ‘z’) (pchar ‘o’) id

• id is F#’s identity function.

• Let’s play with this in fsharpi.

More details

• It is critical that you read the “Parser Combinators” reading.

• I suggest that you sit down, uninterrupted, for an hour

or two, and work through the examples in fsharpi.

• The reading builds the Parsers.fs library that you are

given for HW9.

Example: brace language

• An expression is a sequence of terms, consisting of at least

one term.

• A term is either 'aaa', 'bbb', or a brace expression.

• A brace expression is '{', followed by an expression,

followed by '}'.

Example: brace language

<expr> ::= <term>+
<term> ::= aaa
 | bbb
 | <brace>
<brace> ::= { <expr> }

We will write a parser for this language.

Recap & Next Class

Today:

Next class:
Building an entire language

Writing a parser

