
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: C

Topics

Core C

Pointers + stack model = “boxes and arrows”

Makefiles

Storage duration

Call-by-value evaluation

Pointers: the key to abstraction

Your to-dos

1. Lab 6, due Sunday 10/23 (partner lab)
2. One more quiz (next Tue/Wed) before midterm.
3. Review quiz solutions if you haven’t already…

Announcements

•Midterm exam, in class, Thursday, Nov 3.
•Colloquium: What I Did Last Summer
(Research), 2:35pm in Wege Auditorium with
cookies.

COOKIES

Assignment resubmissions

TA feedback

C

I can’t cover everything you
need to know in class.

Please do the reading.

C: helloworld

C is about memory

It uses a model of a computer that I call the
“boxes and arrows model.”

As in Breph (from lab 6), C can refer to either a value,
or the location of a value.

Breph C

Address of & &x

Store addr ! y = &x

Store through . *y = 2

Dereference * *y

For C, assume:
int x = 1

int* y = NULL

C has pointers

Think of pointers as a game with four rules.

C is more sophisticated because it has variables.

variable ≡ location

Call stack

C example: “address of”

main
x = 1

y = NULL

x is int
y is int*

y = &x

What happens when we run:

Call stack

C example: “address of”

main
x = 1

y =

x is int
y is int*

y = &x

What happens when we run:

Call stack

C example: “address of”

main
x = 1

y =

x is int
y is int*

How does this work?
The call stack has slots.

Each slot has an address.
“Take the address of x and assign it to y.”

y = &x
100

96

…

Call stack

C example: store through pointer

main
x = 1

y =

x is int
y is int*

100

96

…

*y = 2

What happens when we run:

Call stack

C example: store through pointer

main
x =

y =

x is int
y is int*

100

96

…

*y = 2

2 is “stored through” y into x.

2

1

Call stack

C example: dereference

main
x =

y =

x is int
y is int*

100

96

…

*y

2

What happens when we run:

The value “stored through” y is retrieved: 2

#include <stdio.h>

void something(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main() {
 int x = 1;
 int y = 2;
 something(&x, &y);
 printf(“x = %d, y = %d\n”, x, y);
 return 0;
}

Partner activity

What does this program print?

Makefiles

Makefiles

A Makefile is a specification used by the make tool to
automate the compilation of programs.

Rationale

Programmers build software frequently.

Lazy
(don’t want to retype)

Impatient
(don’t want to wait for compiler)

An example
Suppose we have three source files.

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

Let’s compile this
$ clang a.c b.c c.c -o program

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

Oh! We need headers

int foo (int a);a.h int bar (int b);b.h

Now we can build
$ clang a.c b.c c.c -o program

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

int foo (int a);a.h int bar (int b);b.h

Insight

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

int foo (int a);a.h int bar (int b);b.h
The entire project does not need to rebuilt on every change.

Insight

int foo (int a) {
 return a + 1;
}

a.c
int bar (int b) {
 return b - 1;
}

b.c

#include <stdio.h>
#include "a.h"
#include "b.h"

int main() {
 int c = bar(foo(2));
 printf("c = %d\n", c);
 return 0;
}

c.c

depends on depends on

int foo (int a);a.h int bar (int b);b.h
The entire project does not need to rebuilt on every change.

make a change

a.c and b.c
do not change.

Do we really need 
to rebuild them?

3

Let’s write a Makefile for this example

Recap & Next Class

Today:

Next class:

Basic C

Boxes and arrows model / pointers
Makefiles

Storage duration

Call-by-value evaluation

Pointers: the key to abstraction

