
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: Computability, part 2

Topics

Halting problem
Reduction proofs

Garbage collection

Your to-dos

1. Lab 5, due Sunday 10/16 (partner lab)
2. Review quiz solutions if you haven’t already…

Announcements

•Field trip to WCMA, Tuesday, Oct 18.
•Midterm exam, in class, Thursday, Nov 3.
•Colloquium: What I Did Last Summer
(Research), 2:35pm in Wege Auditorium with
cookies.

COOKIES

•Rescheduled office hours (faculty “retreat”)

Mountain Day, whenever that is… Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly integrated
into a programming language runtime.

John McCarthy

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage

location “mark” bit

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells

3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

Decidability Problems

A decidability problem is a question with a yes
or no answer about a particular input.

“Is x prime?”

In CS, we care about whether there is an
algorithm for solving decidability problems.

If there is no algorithm, then the problem is
undecidable.

Decidability Problems

A decidability problem is a question with a yes
or no answer about a particular input.

“Is x prime?”

In CS, we care about whether there is an
algorithm for solving decidability problems.

If there is no algorithm, then the problem is
undecidable.

The Halting Problem
Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

How might this work?
Clarifications:

P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

The Halting Problem
Decide whether program P halts on input x.

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Notes on the proof

We utilize two key ideas:

• Function evaluation by substitution
• Reductio ad absurdum (proof form)

The form of the proof is reductio ad absurdum.
Literally: “reduction to absurdity”.
Start with axioms and presuppose the
outcome we want to show.
Then, following strict rules of logic, derive
new facts.
Finally, derive a fact that contradicts another
fact.
Conclusion: the presupposition must be false.

Notes on the proof Reductio ad Absurdum

A1 A2 A3

H

F1

F2

¬A3

¬

😧

Function Evaluation by Substitution
def addone(x):

 return x + 1

addone(1)

[1/x]x + 1

1 + 1

λx.(+ x 1)1

[1/x](+ x 1)

(+ 1 1)

22

The Halting Problem

Notes on the proof:

The proof relies on the kind of substitution
that we’ve been using to “compute” functions
in the lambda calculus.

Remember: we are looking to produce a
contradiction.

The proof is hard to “understand” because the
facts it derives don’t actually make sense.
Don’t read too deeply.

The Halting Problem: Proof
Suppose:

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Construct:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

{Halt
always

halts!

{
DNH

does not

always halt!

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if P(P) halts.
DNH(P) will halt if P(P) runs forever.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

P PP
P PP

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH() will run forever if () halts.
DNH() will halt if () runs forever.

P = DNH

DNH DNHDNH
DNH DNHDNH

This literally makes no sense. Contradiction!

Therefore, the Halt function cannot exist.

What was our one assumption? Halt exists.

Need more explanation?
Watch this!

https://youtu.be/macM_MtS_w4

Reductions

A reduction is an algorithm that transforms an instance of
one problem into an instance of another. Reductions are
often employed to prove something about a problem
given a similar problem.

A Breducer

problem problem

Reductions
Reductions are often used in a counterintuitive way.

Bar Fooreducer

problem problem

For example, if we want to know whether problem Foo is
impossible, we assume Foo is possible, and then use that
fact to show that problem Bar (which we already know to
be impossible) appears to be possible.

The above is a contradiction, meaning that Foo is not
possible.

Reductions

An important part of a reduction is that the reducer be an
ordinary algorithm.

The reducer should not solve the problem. A reducer just
converts problems from one form to another.

You will get a lot more exposure to reductions in CSCI 361.

Bar Fooreducer

problem problem

Reductions

2

Plus

1

3

The humble algorithm.

(sorry, vegetarians)

Reductions

2

Plus

1

Minus

3

Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = -(-x-y)

Halt

true

int main(…){

…

return 0

}

1

Reductions

We know that Halt is not computable.

Halt0

true

int main(…){

…

return 0

}

Reductions

Is Halt0 computable?
A function f(i) halts not if and only if f does not halt on input i.

1

Reductions

A function f(i) halts not if and only if f does not halt on input i.

def halt(f, i):

 return not halt0(f, i);

If Halt0 is computable, couldn’t we do this?

Assume that Halt0 is computable.
(e.g., it’s in your standard library)

Halt0

false

Reductions

Reduction: Construct Halt using Halt0.

Halt

true

int
main(… 1

Halt

true

int main(…){

…

return 0

}

1

Reductions

We know that Halt is not computable.

Reductions

If we can build this new machine,
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int
main(… 1

We can use the Halting Problem to show that other
problems cannot be solved by reduction to the
Halting Problem.

We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!

Generality
def myprog(x):

 return 0

def Halt(f,i):

 if(f = “def myprog(x):\n\treturn 0”):

 return true

 else

 return false

The Halting Problem is about an arbitrary program.

Recap & Next Class

Today:

Next class:

Halting problem

WCMA

Reduction proofs

