CSCI 334:
Principles of Programming Languages

Lecture 7: Evaluation by Rewriting

Instructor: Dan Barowy
Williams

Topics

Lambda calculus—how to evaluate it

Your to-dos

1. Lab 4, due Sunday 9/9 (partner lab)
2. Reading quiz, due Wednesday 9/5.

Lambda calculus: relevance

Fundamental technique for building programming
languages that work correctly (and intuitively!).

But it can also be leveraged to do some seemingly
magical things, like type inference:

Vector<Association<String, FrequencyList>> table =
new Vector<Association<String, FrequencyList>>();

Vector<Association<String, FrequencyList>> table = new Vector<>();

let table = new Vector<>()

Class Lambda Grammar

Evaluation: You know how Java does it

<expr> 1= <value>
| <abs>
| <app>
class Program {
| <parens> public static void hello() {
L — println (“Hello world!”);
<var> = o € {a ... z} hello)
<abs> 1= A<var>.<expr>
public static void main(..) {
<app> 1 1= <expr><expr> main }}mlloﬁ;
<parens> ::= (<expr>) }
<value> ::=v €N Call stack
| <var>
Evaluation: Lambda calculus is like algebra a-Reduction
(AX.X) X (Ax.X) X

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

a-reduction

B-reduction

This expression has two different x variables

Which should we rename?
Rule:

[Ax.<expr>] =, [Ay. [y/x]<expr>]

[v/x]<expr> means “substitute y for x in <expr>"

a-Reduction

Free vs bound variables

(Ax.x)x given
(Ay. [y/x]x)x a-reduce y for x (binding) (Ax. %) %
(AY.V) x a-reduce y with x (expr) / '\
bound free
Watch out! B-Reduction
(AX.X) Yy

AX. Xy given How we “call” or apply a function to an

Ay. [y/x]xy a-reduce y for x argument

AY.YY inner a-reduction Rule:

this is incorrect!

The lambda has “captured” the free y.
Substitution must be capture-avoiding.

[(Ax.<expr>)yl = [[y/x]<expr>]

Let’s reduce this

(Ax.x) X

Watch out!
(Ax.Ax.x)x given
([%/x]Ax.x) B-reduce x for x
(Ax.x) B-reduce inner expr
done

The inner lambda term redefines x and
therefore “blocks” substitution of x.

How far do we go?

We keep going until there is nothing left to simplify.

X 4— done
XX 4— done
AX.Y 4— done

(Ax.xy)Zz <4— notdone
That “most simplified” expression is called a
normal form.

An expression that can be simplified is
a called a redex.

Try this one with a partner

(AX.AY.YX) XY

(don’t forget precedence/associativity rules)

Sometimes multiple simplifications Activity

Order (mostly) does not matter

Normal order reduction:

M
/ \ |f|\/|—>|\/|1 and|\/|_,|\/|2 (Af . AX.E(f x)) (Az.(+ x 2))2
M, M,

then My =* Nand M, =»* N

for some N
N “confluence”
Recap & Next Class
Today:

Lambda calculus: how to evaluate

Next class:
Computability

