
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: Evaluation by Rewriting

Topics

Lambda calculus—how to evaluate it

Your to-dos

1. Lab 4, due Sunday 9/9 (partner lab)
2. Reading quiz, due Wednesday 9/5.

Lambda calculus: relevance

Vector<Association<String,FrequencyList>> table =

new Vector<Association<String,FrequencyList>>();

let table = new Vector<>() 

…

Fundamental technique for building programming
languages that work correctly (and intuitively!).

But it can also be leveraged to do some seemingly
magical things, like type inference:

Vector<Association<String,FrequencyList>> table = new Vector<>();

Class Lambda Grammar

<expr> ::= <value>

 | <abs> 

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z } 
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ

 | <var>

class Program {

 public static void hello() {

 println(“Hello world!”);

 }

 public static void main(…) {

 hello();

 }

}

Call stack

main

hello

Evaluation: You know how Java does it

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

⟦λx.<expr>⟧ =α ⟦λy.[y/x]<expr>⟧

[y/x]<expr> means “substitute y for x in <expr>”

α-Reduction

(λx.x)x given
(λy.[y/x]x)x α-reduce y for x (binding)
(λy.y)x α-reduce y with x (expr)

Free vs bound variables

(λx.x)x

freebound

Watch out!

λx.xy given
λy.[y/x]xy α-reduce y for x
λy.yy inner α-reduction

The lambda has “captured” the free y.
Substitution must be capture-avoiding.

this is incorrect!

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

Rule:

⟦(λx.<expr>)y⟧ =β ⟦[y/x]<expr>⟧

Let’s reduce this

(λx.x)x

Watch out!

(λx.λx.x)x given
([x/x]λx.x) β-reduce x for x
(λx.x) β-reduce inner expr

The inner lambda term redefines x and
therefore “blocks” substitution of x.

done

How far do we go?

x

We keep going until there is nothing left to simplify.

(λx.xy)z

xx

λx.y

That “most simplified” expression is called a
normal form.

done
done
done
not done

An expression that can be simplified is
a called a redex.

Try this one with a partner

(λx.λy.yx)xy

(don’t forget precedence/associativity rules)

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

Sometimes multiple simplifications Activity

(λf.λx.f(f x))(λz.(+ x z))2

Normal order reduction:

Recap & Next Class

Today:

Next class:

Lambda calculus: how to evaluate

Computability

