
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: The Dream of Computation

Topics

Backus-Naur form

Lambda calculus—what it is

The dream

Your to-dos

1. Reading quiz, due Wednesday 9/28.
2. Lab 3, due Sunday 10/2 (individual lab)

Announcements

•No class on Thursday.
•CS Colloquium this Friday, Sept 30 @ 2:35pm in
Wege Auditorium (TCL 123)

Sonia Roberts (Northeastern University)
Sonia is a postdoctoral research associate working on
soft sensors based on origami and knitted structures
for soft robots at Northeastern University as part of
the Institute for Experiential Robotics.

Sonia’s research focuses on the morphological design
and control of robots, asking questions like how
detailed a model of the environment a robot needs, why
a robot might need legs or wheels for different tasks,
and what the trade-off is between robustness and
plasticity when implementing aspects of a robot's
control using morphology versus actuated degrees of
freedom.

Language of languages

The York Plays (late 15th century) comprise one of the
four complete surviving medieval play cycles
sometimes known as ‘mystery cycles’. They are a
series of short plays, known as ‘pageants’, which were
performed by members of different craft guilds (groups
of people practicing the same trade who formed a club)
at locations throughout the city of York. —British Library

Why couldn’t you understand the script?
It’s written in English, after all!

• Appearance: syntax
• What is the set of valid symbols?
• What arrangements of symbols are

permissible?
• Meaning: semantics

• What does a given arrangement of
symbols correspond mean?

We don’t know the “ground rules” for the
document as it is written:

Formal language

A formal language is the set of permissible sentences
whose symbols are taken from an alphabet and whose
word order is determined by a specific set of rules.

English is not a formal language.

Java is a formal language.

Intuition: a language that can be defined mathematically,
using a grammar.

More formally
L(G) is the set of all sentences (a “language”) defined by
the grammar, G.

G = (N, Σ, P, S) where
N is a set of nonterminal symbols.
Σ is a set of terminal symbols.

P is a set of production rules of the form 
 N ::= (Σ⋃N)*
 where * means “zero or more” (Kleene star) and
 where ⋃ means set union
S∈N denotes the “start symbol.”

Backus-Naur Form (BNF)
More concretely, for programming languages, we

conventionally write G in a form called BNF.

John Backus Peter Naur
Invented in 1959 to describe the

ALGOL 60 programming language.

Tower of Hanoi (ALGOL 60) Backus-Naur Form (BNF)

Nonterminals, N, are in brackets: <expression>
Terminals, Σ, are “bare”: x
A production rule, P, consists of the ::= operator, a
nonterminal on the left hand side, and
a sequence of one or more symbols from N and Σ on the
right hand side.

<variable> ::= x

We use ε to denote the empty string.

The | symbol means “alternatively”: <num> ::= 1 | 2

Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit>
 | <num><digit>

as

“num is defined as a digit or as a num followed by a
digit.”

Backus-Naur Form (BNF)

The following definition might look familiar:

<expr> ::= <num>
 | <expr> + <expr>
 | <expr> - <expr>
<num> ::= <digit>
 | <num><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9

Conventionally, we ignore whitespace, but if it matters,
use the ␣ symbol. E.g.,

<expr>␣+␣<expr>

<expr> is the start symbol.

What can computers do?

The Dream

“I thought again about my early plan of a new
language or writing-system of reason, which
could serve as a communication tool for all
different nations... If we had such an universal
tool, we could discuss the problems of the
metaphysical or the questions of ethics in the
same way as the problems and questions of
mathematics or geometry. That was my aim:
Every misunderstanding should be nothing more
than a miscalculation (...), easily corrected by the
grammatical laws of that new language. Thus, in
the case of a controversial discussion, two
philosophers could sit down at a table and just
calculating, like two mathematicians, they could
say, 'Let us check it up …’”

Wilhelm Gottfried Leibniz

The Dream

Wilhelm Gottfried Leibniz

“stepped reckoner”

“What is the answer to the ultimate
question of life, the universe, and

everything?

What is computable?

• Hilbert: Is there an algorithm

that can decide whether any

logical statement is valid?

• “Entscheidungsproblem” 

(literally “decision problem”)

• Leibniz thought so!

What is computable?
• Why do we care?

• f(x) = x + 1

• We can clearly do this with  

pencil and paper.

• ∫ 6x dx

• Also computable, in a different manner.

• We care because the computable functions can

be done on a “computer.”

Lambda calculus
• Invented by Alonzo Church in  

order to solve  

the Entscheidungsproblem.

• Short answer to Hilbert’s 

question: no.

• Proof: No algorithm can decide equivalence of

two arbitrary λ-calculus expressions.

• By implication: no algorithm can determine

whether an arbitrary logical statement is valid.

What is the meaning of x in algebra?

Pro tip

Don’t try to “understand” the
lambda calculus.

Aside from “variable,” “function definition,” and
“application,” it has no inherent meaning.

We ascribe meaning to it, just as we do with algebra.

The lambda calculus is simply a system for
reasoning by using the logic of functions.

Lambda calculus grammar

<expr> ::= <var>

 | <abs>

 | <app>

<var> ::= x

<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<expr> is the start symbol.

What is a variable?

<var> ::= x

It’s just a value.

What is an abstraction?

<abs> ::= λ<var>.<expr>

It’s a function definition

def foo(x):

 <expr>

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

argumentfunction

Parsing and Parse Trees

There are at least two forms of trees
that we might refer to “parse trees”

Parsing is the process of analyzing a string of
symbols, conforming to the rules of a formal
grammar, to understand:
1) whether that sentence is valid (s ∈ L(G)), or
2) the structure (e.g., “parts of speech”) of that

sentence (a parse tree).

Derivation Tree

1+2+3

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

e

e+e

e+e

d

1 d

2

d

3

n

n n

Shows every step of how a sentence is parsed.
Abstract Syntax Tree

+
1

2 3
+

Ignores derivation details; only essential structure

1+2+3

In an AST, internal nodes are
operations, leaves are data.

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Parse tree

We can create a “derivation tree” by following
the rules of a grammar as we interpret a
sentence of a language.

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

Abiguity

You might have noticed that there is an
alternative parse tree.

λx.xx
<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

Abiguity

In fact, the lambda calculus is never
ambiguous because of its precedence and
associativity rules—see the reading.

Parentheses disambiguate grammar

Axiom of equivalence for parens

<expr> = (<expr>)

Let’s modify our grammar

Lambda calculus grammar

<expr> ::= <var>

 | <abs>

 | <app>

 | <parens>

<var> ::= x

<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

While we’re at it…

<expr> ::= <var>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

Also…

<expr> ::= <value>

 | <abs>

 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ
 | <var>

This expression is now unambiguous

(λx.x)x

<expression>

<application>

<abstraction>

<expression>

<variable> <expression>

<variable>x

x

<variable>

x

<expression>

<parens>

However, this is the parse tree
we really care about

(λx.x)x

<application>

<abstraction>

<variable> <variable>

x x

<variable>

x

Free vs bound variables

(λx.x)x

freebound

Next class: evaluation

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Recap & Next Class

Today:

Next class:

BNF

Lambda calculus: how to evaluate

Lambda calculus / computation

