
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 5: Higher Order Functions

Topics

More pattern matching
Option vs exceptions
Higher order functions

Your to-dos

1. Lab 2, due Sunday 9/25 by 10pm (partner lab). More Pattern Matching

let rec cartesianProduct xs ys =

 match xs,ys with

 | [] ,_ -> []

 | _ ,[] -> []

 | x::xs’,_ ->

 let zs = ys |> List.map (fun y -> (x,y))

 zs @ cartesianProduct xs’ ys

Activity: Pattern matching on tuples
Write a function that computes the Cartesian product
of two sets, represented by lists:

A × B = { (a,b) | a ∈ A and b ∈ B }

Hint: I find it helpful to think about base cases first.

• Another example: handling errors.

• F# has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =

| None

| Some of 'a

let divide quot div =

 match div with

 | 0 -> None

 | _ -> Some (float quot/float div)

Avoiding errors with patterns

> divide 6 7;;

val it : float option = Some 0.8571428571

> divide 6 0;;

val it : float option = None

>

Avoiding errors with patterns

• Why option?

• option is a data type; 

not handling errors is a static type error!

option type

Exceptions

let divide quot div = quot/div

This code is problematic

(but only because of integer division)

let divide quot div = quot/div

[<EntryPoint>]

let main args =

 let quot = int args[0]

 let divisor = int args[1]

 try

 let dividend = divide quot divisor

 printfn "%d" dividend

 0

 with

 | :? System.DivideByZeroException ->

 printfn "No way, dude!"

 1

Exception handling

Higher order functions

Three amazing functional concepts

•First-class functions

•Higher-order functions

•map

•fold

a function

+1

3

4

“first class” function

Function definitions are values in a

functional programming language

a function

+1

3

4

a function

map

1

3

2

4

5

1

3

2

4

5

Like a for loop, but without mutable variables

List.map (fun x -> x + 1) [1;2;3;4;5]

Intuition:

map

1

3

2

4

5

2

4

3

5

6

Like a for loop, but without mutable variables

[1;2;3;4;5] |> List.map (fun x -> x + 1)

Intuition:

map

1

3

2

4

5

1

3

2

4

5

Key observation:

Intuition:

n things in, n things out

map

map

[1;2;3;4;5]
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

[2;3;4;5;6]

map

Intuition:

map
List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

map

[2;8;22;4]

|> List.map (fun x -> x + 1)

|> List.map float

|> List.map (fun x -> x / 3.3)

|> List.sort

[0.9090909091; 1.515151515; 2.727272727;

6.96969697]

fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr

 (car

 (cons

 (cons ‘a ‘b)

 (cons ‘c ‘d)

)

)

)

evaluation

fold

Intuition:

fold

1

3

2

4

5

1

3

2

4

5

List.fold (fun acc x -> acc+x) 0 [1;2;3;4;5]

Intuition:

+

3 +

6 +

10+

0 + 1

fold

1

3

2

4

5

1

3

2

4

5

[1;2;3;4;5] |> List.fold (fun acc x -> acc+x) 0

Intuition:

+

3 +

6 +

10+

0 + 1 fold left
List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4]

acc = 0+1, [2;3;4]

acc = 1+2, [3;4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

what does this print?

List.fold (fun acc x -> acc + x) 

 "williams"

 ["2";"3"]

fold right
List.foldBack

 (fun x acc -> acc+x) [1;2;3;4] 0
[1;2;3;4], acc = 0

[1;2;3], acc = 0+4

[1;2], acc = 4+3

[1] acc = 7+2

[], acc = 9+1

returns acc = 10

what does this print?

List.foldBack (fun x acc -> acc + x)

 ["2";"3"]

 "williams"

Activity

• Write a function number_in_month that takes a list of dates

(where a date is int*int*int representing year, month,

and day) and an int month and returns how many dates are

in month

• Use List.fold

let number_in_month(ds: Date list)(month: int) : int =

fold

let number_in_month(ds: Date list)(month: int) : int =

 ds

 |> List.fold (fun acc (_,mm,_) ->

 if month = mm then

 acc + 1

 else

 acc

) 0

Recap & Next Class

Today:

Next class:
PL foundations

Option vs exceptions
More pattern matching

Higher order functions

