
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: ML, part 2

Topics

Algebraic data types

Option type

Pattern matching

Your to-dos

1. Lab 2, due Sunday 9/25 by 10pm (partner lab).
2. Reading quiz, due Wednesday 9/21 by 10pm.

Announcements

•CS Colloquium this Friday, Sept 23 @ 2:35pm in
Wege Auditorium (TCL 123)

Michael Greenberg (Stevens Institute of Tech)
Formal Support for the POSIX Shell
The POSIX shell is a widely deployed, powerful tool for managing
computer systems. The shell is the expert’s control panel, a necessary
tool for configuring, compiling, installing, maintaining, and deploying
systems. Even though it is powerful, critical infrastructure, the POSIX
shell is maligned and misunderstood. Its power and its subtlety make for
a dangerous combination.

How can we support the POSIX shell? I'll describe two recent lines of
work---Smoosh, a formal, mechanized, executable small-step semantics for
the POSIX shell---and ffs---a tool for helping users manipulate
semi-structured data (like JSON and YAML) in the shell.

Free your mind

Freeing your mind is difficult

Pattern Matching

Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

A pattern is built from

•values,

• (de)constructors,

•and variables

Tests whether values match “pattern”

If yes, values bound to variables in pattern

Pattern matching Pattern matching
let rec product nums =
 if (nums = []) then
 1
 else
 (List.head nums)
 * product (List.tail nums)

let rec product nums =
 match nums with
 | [] -> 1
 | x::xs -> x * product xs

Using patterns…

Activity: Pattern matching on integers

Write a function listOfInts that returns a list
of integers from zero to n.

Oops! This returns the list backward.

Let’s flip it around.

let rec listOfInts n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)
 li n |> List.rev

… by defining a function inside our function.

Sidebar: breakpoint debugging

• Remember, a list is one of two things:
– []
– <first elem> :: <rest of elems>
– E.g., [1; 2; 3] = 1::[2,3] = 1::2::[3]
= 1::2::3::[]

• Can define function by cases…

Pattern matching on lists

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

let rec cartesianProduct xs ys =
 match xs,ys with
 | [] ,_ -> []
 | _ ,[] -> []
 | x::xs’,_ ->
 let zs = ys |> List.map (fun y -> (x,y))
 zs @ cartesianProduct xs’ ys

Activity: Pattern matching on tuples
Write a function that computes the Cartesian product
of two sets, represented by lists:

A × B = { (a,b) | a ∈ A and b ∈ B }

Hint: I find it helpful to think about base cases first.

• Patterns can be used in place of variables
• Most basic pattern form
– let <pattern> = <exp>

• Examples
– let x = 3
– let tuple = ("moo", “cow")
– let (x,y) = tuple
– let myList = [1; 2; 3]
– let w::rest = myList
– let v::_ = myList

Patterns in declarations

Algebraic Data Types*

*not to be confused with Abstract Data Types!

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

• Invented by Rod Burstall at
University of Edinburgh in ‘70s.

• Part of the HOPE programming
language.

• Not useful without pattern matching.
• Like peanut butter and chocolate,

they are “better together.”

Algebraic Data Types

A “move” function in a game

north

south

eastwest

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

A “move” function in a game (Java)

public … move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

type Direction =
 North | South | East | West;

let move coords dir =
 match coords,dir with
 |(x,y),North -> (x,y - 1)
 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (Java)
Discriminated Union (sum type)

• Pattern match to extract parameters

type Shape =
 | Rectangle of float * float
 | Circle of float

let s = Rectangle(1.0,4.0)
match s with
| Rectangle(w,h) -> …
| Circle(r) -> …

Parameters

• Names are really only useful for initialization, though.

let s = Rectangle(height = 1.0, width = 4.0)

Named parameters

type Shape =
 | Rectangle of width: float * height: float
 | Circle of radius: float

type MyList<'a> =
 | Empty
 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with patterns

type option<‘a> =
| None
| Some of 'a

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (float quot/float div)

Avoiding errors with patterns

> divide 6 7;;

val it : float option = Some 0.8571428571

> divide 6 0;;

val it : float option = None

>

Avoiding errors with patterns

• Why option?

• option is a data type; 

not handling errors is a static type error!

option type

Recap & Next Class

Today:

Next class:
Higher order functions

Algebraic data types
Option type

Pattern matching

