
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 3: ML

Topics

ML family of languages

F#

Your to-dos

1. Lab 1, due Sunday 9/10 (partner lab)

Announcements

•CS Colloquium tomorrow @ 2:35pm in Wege
Auditorium (TCL 123)

Ina Fiterau Brostean (UMass Amherst)
Machine Learning for Healthcare
Fiterau’s research lies at the intersection of machine
learning and healthcare. Her Information Fusion Lab is
currently working on a project combining features
extracted from brain MRIs with patient demographics,
test results, and contextual information, to detect
Alzheimer’s disease earlier than traditional
diagnostics can.

ML

“Free your mind”

1960

1970

1980

1990

2000

2010

LISP
1950

ML

Standard ML Caml
OCaml

Miranda
Haskell

F#

Java

C#

ML ML
• Dana Scott

• Logic of Computable Functions

• Can we automate proofs?

• Yes. Theorem proving is

essentially a “search problem”!

• But proof search is “hard.” 

Many problems are NP-

Complete.

• Works “in practice” with the

right “tactics”

ML
• Robin Milner

• How to program tactics?

• A “meta-language” is needed

• ML is born (1973)

• First impression upon

encountering a computer:

"Programming was not a very

beautiful thing. I resolved I

would never go near a

computer in my life."

F#

• Don Syme

• ML is “more fun” than Java or C#.

• Can we use ML instead?

• F# is born (2010).

Logical operators

Logical operators

operation syntax

and &&

not not

equals =

not equals <>

inequalities <, >, <=, >=

unit

unit datatype

public static void main(String[] args) { … }

let main args = …

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) = …

Remember: every expression must return a value.
A function can’t return nothing.

unit datatype

public static void main(String[] args) { … }

let main(args: string[]) : unit = …

Therefore, “nothing” is a thing… called unit.

unit datatype
$

How does one obtain a value of unit?

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5

Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

 unit;;

 ^^^^

stdin(1,1): error FS0039: The value or constructor 'unit' is
not defined.

>
val it : unit = ()

>

$ dotnet fsi

> unit;;

> ();;

()

val it : unit = ()

>

> ignore (foo());;

val it : int = 2

>

val foo : unit -> int

>

You can also ignore…
> let foo() = 2;;
>

> foo();;

val it : unit = ()

>

> foo() |> ignore;;

“forward pipe” operator
<expr> |> <expr>

foo() |> ignore

By the way…

let main(args: string[]) : unit = …

By the way…

let main(args: string[]) : int = …

Primitives

† actually defined by the CLR

Primitives

bool

byte

int

single

double

char

unit

sbyte

int16

uint16

uint

int64

uint64

nativeint

unativeint

decimal

Combining forms

Functions

> let foo a b c = a;;

>

val foo: a: 'a -> b: 'b -> c: 'c -> 'a

> foo 1 2 3;;

val it: int = 1

>

>

Tuples

> ("a", 1, 4.4);;

>

val it: string * int * float = ("a", 1, 4.4)

> let baz (a: string, b: int, c: float) = (a,b,c);;

val baz: a: string * b: int * c: float -> string * int *
float

>

>

Records

> type Point = { x: int; y: int; z: int };;>

type Point =

 {

 x: int

 y: int

 z: int

 }

>> let p = { x = 1; y = 2; z = 3 };;

val p: Point = { x = 1

 y = 2

 z = 3 }

>> let up pt = { x = pt.x; y = pt.y + 1; z = pt.z };;

>> up p;;

val up: pt: Point -> Point

val it: Point = { x = 1

 y = 3

 z = 3 }

Lists

Linked List

A linked list is a recursive data structure.

A list is either:

• the empty list, or
• a node, containing an element and a reference to a list.

Linked List

The empty list is defined as nil (or [])

Linked List

Every other list has at least one list node.

Linked List

23

The last node in the list always points to nil.

Linked List

A list has parts.

234

head tail

Linked List

A list has parts.

234

head

tail

• Examples
– [] is the empty list
– [1; 2; 3; 4], [“wombat"; "dingbat"]
– all elements of list must be same type

• Operations
– length	 	 List.length [1;2;3] ⇒ 3

– cons	 1::[2;3] ⇒ [1; 2; 3]

– head List.head [1;2;3] ⇒ 1

– tail List.tail [1;2;3] ⇒ [2;3]

– append	 [1;2]@[3;4] ⇒ [1; 2; 3; 4]

– map	 List.map succ [1;2;3] ⇒ [2;3;4]

Lists

• 1::2::[] : int list 
“wombat”::"numbat"::[] : string list

• What type of list is []?
- [];

val it : 'a list

• Polymorphic type
– 'a is a type variable that represents any type
– 1::[] : int list

– “a”::[] : string list

List types

• Note that recursive functions must use rec keyword.
• Not valid: 
let fact n = 
 if n <= 0 then 
 1 
 else 
 n * fact (n - 1)

• Instead: 
let rec fact n = 
 if n <= 0 then 
 1 
 else 
 n * fact (n - 1)

Recursive functions

> let rec product nums =

 if (nums = []) then

 1

 else

 (List.head nums)

 * product (List.tail nums);;

val product : int list -> int

> product [5; 2; 3];;

val it : int = 30

Functions on Lists

Let’s define product…

Pattern matching
let rec product nums =

 if (nums = []) then

 1

 else

 (List.head nums)

 * product (List.tail nums)

let rec product nums =

 match nums with

 | [] -> 1

 | x::xs -> x * product xs

Using patterns…

Recap & Next Class

Today:

Next class:
More F#

History of ML
F#

